Реферат: Иллюзии зрительного восприятия (эксперименты Мюллера-Лайера). Обман зрения в геометрии. Список использованной литературы

Введение

Мы воспринимаем окружающее нас как данность: солнечный луч, играющий бликами на поверхности воды, переливы красок осеннего леса, улыбку ребенка... Мы не сомневаемся, что реальный мир именно таков, каким мы его видим. Но так ли это на самом деле? Почему иногда зрение нас подводит? Как мозг человека интерпретирует воспринимаемые объекты?

Человек воспринимает большую часть информации об окружающем мире благодаря зрению, но мало кто задумывается о том, как именно это происходит. Чаще всего глаз считают похожим на фотоаппарат или телекамеру, проецирующую внешние объекты на сетчатку, которая является светочувствительной поверхностью. Мозг "смотрит" на эту картинку и "видит" все, что нас окружает. Однако не все так просто. Во-первых, изображение на сетчатке перевернуто. Во-вторых, из-за несовершенных оптических свойств глаза, таких как абберация, астигматизм и рефракция, картинка на сетчатке расфокусирована или размазана. В-третьих, глаз совершает постоянные движения: скачки при рассматривании изображений и при зрительном поиске, мелкие непроизвольные колебания при фиксации на объекте, относительно медленные, плавные перемещения при слежении за движущимся объектом. Таким образом, изображение находится в постоянной динамике. В-четвертых, глаз моргает приблизительно 15 раз в минуту, а это значит, что изображение через каждые 5-6 секунд перестает проецироваться на сетчатку. Поскольку человек обладает бинокулярным зрением, то фактически он видит два размытых, дергающихся и периодически исчезающих изображения, а значит, возникает проблема совмещения информации, поступающей через правый и левый глаз.

Оптико-геометрические иллюзии

Иллюзии - это искаженное, неадекватное отражение свойств воспринимаемого объекта. В переводе с латыни слово "иллюзия" означает "ошибка, заблуждение". Это говорит о том, что иллюзии с давних времен интерпретировались как некие сбои в работе зрительной системы. Изучением причин их возникновения занимались многие исследователи. Основной вопрос, интересующий не только психологов, но и художников, - как на основе двухмерного изображения на сетчатке воссоздается трехмерный видимый мир. Возможно, зрительная система использует определенные признаки глубины и удаленности, например, принцип перспективы, предполагающий, что все параллельные линии сходятся на уровне горизонта, а размеры объекта по мере его удаления от наблюдателя пропорционально уменьшаются. Мы не осознаем, насколько сильно изменяется проекция объекта на сетчатке по мере его удаления.

Одна из самых известных оптико-геометрических иллюзий - иллюзия Мюллера-Лайера (см. рис. 2 ).

Посмотрев на этот рисунок, большинство наблюдателей скажет, что левый отрезок со стрелочками наружу длиннее правого со стрелочками, направленными внутрь. Впечатление настолько сильное, что, согласно экспериментальным данным, испытуемые утверждают, что длина левого отрезка на 25-30% превышает длину правого.

Еще один пример оптико-геометрических иллюзий - иллюзия Понцо (рис. 3 )

Также иллюстрирует искажения восприятия размера. Левый отрезок кажется значительно больше правого. Было предложено множество теорий, объясняющих подобные искажения. Одна из наиболее интересных предполагает, что человек интерпретирует обе картинки как плоские изображения в перспективе. Стрелочки на концах отрезков, а также схождение косых лучей в одной точке создают признаки перспективы, и человеку кажется, что отрезки расположены на разной глубине относительно наблюдателя. Учитывая эти признаки, а также одинаковую проекцию отрезков на сетчатке, зрительная система вынуждена сделать вывод, что они разного размера. Те фрагменты рисунка, которые кажутся более удаленными, воспринимаются большими по размеру.

Значение перспективы для восприятия иллюзии Мюллера-Лайера иллюстрирует рис. 4 . В повседневной жизни нас окружает множество прямоугольных предметов: комнаты, окна, дома, типичные очертания которых можно видеть на рис. 4а, 4б. Поэтому изображение, на котором линии расходятся, можно воспринимать как угол здания, расположенный дальше от наблюдателя, в то время как рисунок, на котором линии сходятся, воспринимается как угол здания, расположенный ближе. Аналогично можно объяснить иллюзию Понцо. Косые линии, сходящиеся в одной точке, ассоциируются либо с длинным шоссе, либо с железнодорожным полотном, на котором лежат два предмета. Зрительные шаблоны, сформированные таким "прямоугольным" окружением, и заставляют нас ошибаться при взгляде на рис. 2, 3 . Но при введении в рисунок элементов ландшафта иллюзия исчезает.

Рисунок 4.

Анализ предложенного объяснения оптико-геометрических иллюзий показывает, что, во-первых, все параметры зрительного образа взаимосвязаны, благодаря чему и возникает целостное восприятие, воссоздается адекватная картина внешнего мира. Во-вторых, на восприятие влияют сформированные повседневным опытом стереотипы, например, представления о том, что мир трехмерен, начинающие работать, как только в картинку вносятся признаки, указывающие на перспективу.

Рисунок 5 а.

Рисунок 5 б.

Примером того, как можно разрушить целостный образ объекта, служат так называемые "невозможные", противоречивые фигуры, картины с нарушенной перспективой (см. рис. 5б ). "Невозможная" лестница Пенроуза (рис. 5а ) и ее интерпретация в картине Эшера "Восхождение и спуск" хорошо это иллюстрирует. Посмотрите на рис. 5а и ответьте на вопрос: движется ли человек вверх? Каждый отдельный пролет лестницы говорит нам о том, что он поднимается вверх, однако, пройдя четыре пролета, он оказывается в том же месте, с которого начал свой путь. "Невозможная" лестница не воспринимается как единое целое, поскольку нет согласованности между отдельными ее фрагментами. Раз за разом мы следуем взором за ступеньками, ведущими вверх, пытаясь найти способ решения этой проблемы, и не находим его.

Петрова Оксана

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Почему совершаются ошибки в оценке и сравнении между собой длин отрезком, величин углов, в восприятии формы предметов и т.д. совершаемые наблюдателем при определенных условиях. Актуальность

Объяснение зрительной иллюзии с точки зрения геометрии и провести социальные исследования. Цель

1 Изучить теоретический материал по данной теме. 2 показать применение использования иллюзий в искусстве, в математике, в реальной жизни. 3 Провести исследование, показывающее ограниченность способности наших глаз Задачи

Иллюзии Чертежи Предмет исследования Объект исследования Гипотеза Если наше восприятие обманчиво, то самые простые вещи, если к ним присмотреться, таят в себе самые неожиданные открытия. Зрительные иллюзии можно объяснить с помощью законов геометрии.

1 Изучение 3 анализ, обобщение Методы исследования 2 поиск 4 синтез, классификация

Разновидности иллюзий

Оптические иллюзии Оптические иллюзии – это, попросту говоря оптический обман нашего мозга. Когда наш глаз получает картинку – включается огромное количество процессов в нашем мозге.

Оптические иллюзии

Рассмотрим фигуру составленную из ромбов и треугольников. Правда ли, что ширина меньше, чем высота? Вывод: Тем не менее, они одинаковы, и если мы соединим вершины острых углов, то получим квадрат.

Иллюзия движения Восприятие движения – очень сложный процесс, природа которого еще не вполне выяснена. Если предмет объективно движется в пространстве, то мы воспринимаем его движение вследствие того, что он выходит из области наилучшего видения и этим заставляет нас передвигать глаза или голову, чтобы вновь фиксировать на нем взгляд.

иллюзии движения, на использовании которых основан принцип кинематографа. Смотрите в центр картинки (справа). Появится мерцание фиолетовых и синих колец. Некоторые замечают ещё и циркулярное вращение. А на картинке слева пристально смотрите на шар в центре. Кажется, что узор на нём движется из стороны в сторону. Не отрывая взгляда от центра круга, подвигайте головой. Возникла иллюзия, что узор вокруг шара сдвигается.

Вертикально-горизонтальная иллюзия. Вертикальная линия воспринимается как более длинная. Если же на рисунок одним глазом, то эффект несколько уменьшается. Ощущение вертикального и горизонтального направлений зависит не только от зрительных впечатлений, ног и от стереотипов, сформировавшихся в мозгу человека

Вертикально-горизонтальная иллюзия. Учащимся было предложено определить «на глаз» какая из линий длиннее: вертикальная или горизонтальна. Вертикальная длина Одинаковые по длине Я знаю этот эффект Всего 18 (75%) 4 (18%) 2 (7%) 24 (100%)

Иллюзия Франца Мюллера-Лайера. Стрелки на концах отрезков создают иллюзию искажения длины, поэтому одинаковые отрезки воспринимаются как неодинаковые. Но на самом деле отрезки равны.

Дети (20) Взрослые (10) Всего (30) Отрезки равны 4 (20%) 4 (40%) 8 (27%) Голубой отрезок больше 16 (80%) 6 (60%) 22 (73%) Иллюзия Мюллера-Лайера В ерно определили 20% детей и 40% взрослых.

Иллюзия Поггендорфа. Удивительное впечатление производит картинка с двумя параллельными пересекаемыми наклонной прямой. Если правую линию продолжить, то она пересечётся левой в её верхнем конце. Кажущаяся точка пересечения находится несколько правее.

Продолжением прямой А Продолжением прямой В Между прямыми А и В Всего 3 (17%) 4 (23%) 10 (60%) 17(100%) Иллюзия Поггендорфа Учащимся был задан вопрос: «Продолжением какой прямой является прямая С?»

Иллюзия параллелограмов. Поразительную иллюзию создают углы – тупой и острый; диагонали АВ и АС двух параллелограмов равны, хотя диагональ АС кажется гораздо короче.

Иллюзия параллелограммов

Невозможные плитки. Сколько плиток изображено на картинке ниже? Если смотреть слева, то четыре. Если смотреть справа, то три.

Площадь двух треугольников На картинке ниже вы видите 2 треугольника. Треугольники состоят из четырех фигур. Площадь фигур, из которых состоят треугольники, одинакова. Что у верхнего, что у нижнего (можете вырезать из бумаги и проверить). Что будет если фигуры немного перемешать?

Иллюзия покосившихся квадратов. Очень интересный оптический фокус. Глядя на эту картинку, наш мозг уверяет нас в том, что синие квадраты в центре этой картинки, немного перекосило, и их то и дело клонит на бок. Но расфокусировав взгляд или просто немного отойдя от картинки компьютера, я понимаю, что это правильные четырёхугольники, и что это всего лишь иллюзия.

Эффект персептивной готовности Если посмотреть на картинку ниже, то непонятно сразу какой символ изображён в центре. Данный пример наглядно демонстрирует так называемый эффект персептивной готовности. Суть его заключается в том, что в зависимости от того, откуда вы начали читать, вы готовы увидеть разные символы. Если сверху вниз, то число 13. Если слева направо, то букву “В”.

Рельефное изображение. Мозг, воспринимая предмет, искажает видимое нами рельефное изображение. Примером тому служит приводимый рисунок: куб то кажется видимым сверху, то сбоку; раскрытая книга то кажется изображенной корешком к нам, то корешком от нас. Это происходит как по нашему желанию, так и непроизвольно и иногда даже наперекор нашему желанию. Дело в том, что любое изображение может быть истолковано разными способами, однако зрительная система человека отдает предпочтение наиболее привычной и вероятной интерпретации.

Невозможные фигуры. Фигуры, не существующие в природе, но, существующие в нашем воображении Анализ предложенного объяснения оптико-геометрических иллюзий показывает, что, во-первых, все параметры зрительного образа взаимосвязаны, благодаря чему и возникает целостное восприятие, воссоздается адекватная картина внешнего мира. Во-вторых, на восприятие влияют сформированные повседневным опытом стереотипы. Примером того, как можно разрушить целостный образ объекта, служат так называемые "невозможные", противоречивые фигуры, например, невозможный трезубец Нормана Минго и невозможная лестница Пенроуза

Иллюзия глазами художников Н Некоторые художники изменяют логику изображений пространства, получая различные иллюзии. Под "логикой" пространства мы понимаем те отношения между физическими объектами, которые обычны для реального мира, и при нарушении которых возникают визуальные парадоксы, называемые еще оптическими иллюзиями. Большинство художников, экспериментирующие с логикой пространства, изменяют эти отношения между объектами, основываясь на своей интуиции, как, например, Пикассо. Прекрасный горный пейзаж. Поверните картинку вправо: теперь перед вами молящиеся мать и сын. Перевертыш «Малыш и дедуля»

Задачи. Иллюзия Селфриджа. Если вы хоть немного знакомы с английским языком, то для вас не составит особого труда прочитать название домашнего животного на картинке ниже. Как видно из названия, первым этот обман зрения описал Селфридж (Selfridge , 1955). Суть его заключается в том, что в зависимости от контекста один и тот же символ воспринимается как “Н” или как “А”? Ответ: посмотрите внимательно, ведь на картинке написана абракадабра THE CHT, а не THE CAT.

Иллюзия с ведром. Равны ли внутренний круг на крышке ведра и круг, образующий дно ведра? Ответ: внутренний круг на крышке ведра кажется меньше круга, образующего дно ведра. Однако эти круги равны, при этом трудно отделаться от мысли, что нижний больше верхнего. Присутствие наружного окаймляющего овала создаёт иллюзию, будто заключённый в нём овал меньше нижнего. Какой отрезок больше: АВ или CD ? Ответ: они равны.

Иллюзия в реальной жизни. Оптические иллюзии на дороге. Зрительные иллюзии в одежде. Женщина справа кажется стройнее. Вертикальные полосы удлиняют стены комнаты и она кажется выше Водитель видит нарисованные объекты и думает, что на дороге есть барьер, он снижает скорость, чтобы переехать через него, хотя на самом деле это абсолютно ровная поверхность.

Рассмотрим задачу построения перспективного изображения фигуры На рисунке показано, как получается изображение произвольной точки М плоскости α (цифры 1-4 указывают порядок проведения прямых). Если точка К не лежит в предметной плоскости, то сначала из нее опускают перпендикуляр на α (на рис. это отрезок КМ), затем для его основания (точки М) выполняют построения 1-3. Наконец, проводят прямую КО, пересечение которой с плоскостью π и есть изображение точки К.

Сравним относительные размеры нескольких находящихся в поле зрения предметов. Если предметы удалены от глаз на одно и то же расстояние и расположены достаточно близко друг к другу, их сравнить легко. В этом случае мы редко ошибаемся в своей оценке: более высокий предмет виден под большим углом, поэтому и кажется выше. Усложним задачу. Расположим предметы на разном расстоянии от глаза, в том числе предметы разного размера. Тогда их видимые размеры кажутся одинаковыми.

Вывод. А это означает, что независимо от формы предметов, наблюдаемое явление должно описываться «на языке математики» одним и тем же законом, в котором ключевую роль играют, вероятно, такие параметры, как линейный размер и расстояние до предмета.

Определить высоту столба (вышки, дерева и т. п,) Отойдем от столба на расстояние, на котором больший палец вытянутой вперед руки закроет его полностью,(то есть их видимые размеры станут одинаковыми), подсчитав при этом число сделанных шагов. Для взрослого человека среднее расстояние от глаза до большого пальца вытянутой руки составляет 60 см, длина самого пальца - 7 см, а длина шага - 65 см. По этим данным легко вычислить примерную высоту столба. Аналогично определяется расстояние до недоступного объекта по его известной высоте. Отметим, что описанн ый способ надежен для оценки сравнительно близких расстояний до нескольких сотен метров; чем меньше предмет и чем дальше он находится, тем выше погрешность измерений.

Вывод: С позиции геометрии, во всех приведенных примерах мы имеем дело с подобными фигурами или соответствующими отрезками, а именно высотами, различных по форме фигур; более того, в каждом случае мы сталкиваемся с преобразованием гомотетии, центр которой совпадает с глазом наблюдателя. Поэтому можно утверждать, что если два предмета видны под одним углом зрения, то их линейные размеры отличаются во столько же раз, во сколько раз отличаются расстояния до предмета):

Рассмотрим две «убегающие» от нас параллельные линии (трамвайные или железнодорожные). Они кажутся сходящимися в некоторой точке горизонта. При этом сама точка представляется нам бесконечно удаленной и недосягаемой. Зрение словно пытается убедить нас в том, что вопреки законам геометрии параллельные прямые пересекаются. Доказательство: эта иллюзия объясняется рассмотренной нами выше особенностью зрительного восприятия. Существует предельное значение угла зрения - наименьшее значение, при котором глаз способен видеть раздельно две точки.

Вывод: Существует предельное значение угла зрения - наименьшее значение, при котором глаз способен видеть раздельно две точки.

Социальные исследования. Эксперимент №2 При восприятии фигуры и фона мы склонны видеть, прежде всего, пятна меньшей площади, а также пятна более яркие “выступающие”, причем чаще всего фон нам кажется лежащим дальше от нас, за фигурой. Чем больше контраст яркости, тем лучше заметен объект и тем отчетливее видны его контур и форма. Мы решили провести эксперимент и проверить этот вывод. Мы показали опрашиваемым следующий рисунок и попросили сказать, что они видят. Предполагалось, что на рисунке большинство увидят в первую очередь вазу, а затем два силуэта, согласно теории. Ваза Рубина В ходе эксперимента наше предположение не оправдалось, что видно из таблицы: Восприятие фигуры и фона

Дети (20) Взрослые (10) Всего (30) Увидели вазу 10 (50%) 2 (20%) 12 (40%) Увидели лица 8 (40%) 4 (40%) 12 (40%) Увидели вазу и лица 2 (10%) 4 (40%) 6 (20%) Восприятие фигуры и фона Если рассмотреть детей отдельно от взрослых, то получается следующая картина, что вазу не увидели 8 человек (40%) обучающихся и 4 человека (40%) врослых.

Эксперимент №4 . "Невозможная" лестница Пенроуза. Дети (20) Взрослые (10) Всего (30) Движется 11 (55%) 8 (80%) 19 (63%) Стоит - 7 (35%) 2 (10%) 1 (10%) 1 (10%) 8 (27%) 3 (10%) на восприятие взрослых сформированные повседневным опытом стереотипы влияют в большей мере, чем на детей

Заключение Начиная изучать геометрическую иллюзию Я задала себе Такой вопрос:всегда ли мы можем доверять нашему зрению? Оказывается, нет! Учёные придумали и построили много обманчивых картинок, наглядно демонстрирующих, сколь ограничены возможности наших глаз. В ходе своей работы Я поняла, что Геометрические иллюзии создают богатые возможности для художников, фотографов, модельеров. Однако инженерам и математикам приходится быть осторожными с чертежами и подкреплять ”очевидное” точными расчётами.

1

Илющихина М.И. (Миллерово, МБОУ Гимназия №1 им. Пенькова М.И.)

1. http://www.log-in.ru/illusions/

2. http://vadim-andreev.narod.ru/ufo/iluzia.htm

3. http://www.sciam.ru/2004/6/ochevidnoe.shtml/ В мире науки июнь 2004 «Очевидное-невероятное»

4. http://www.galactic.org.ua/Biblio/vid1.1.htm

5. http://daliworld.narod.ru/pred_2/p_9.htm

6. http://www.im-possible.info/russian/articles/principles/principles.html

7. http://www.novgorod.fio.ru/projects/Project2042/zritelnie_figuri.htm

8. Дорофеев, Г. В. Математика: учеб. для 6 кл. общеобразоват. учреждений / [Г. В. Дорофеев, И. Ф. Шарыгин, С. Б. Суворова и др.]; под ред. Г. В. Дорофеева, И. Ф. Шарыгина. – 8-е изд. – М.: Просвещение, 2006. – С.40.

9. Шарыгин, И.Ф. Математика: Задачи на смекалку: Учеб. пособие для 5 – 6 кл. общеобразоват. учреждений / И. Ф. Шарыгин, А. В. Шевкин. – 6-е изд. – М.: Просвещение, 2001. – С.31.

10. Шеврин, Л. Н. Математика: Учебник – собеседник для 5 кл. средней школы / Л. Н. Шеврин, А. Г. Гейн, И. О. Коряков, М. В. Волков. – 2-е изд. – М.: Просвещение, 1994. – С.123, 251.

Мы привыкли доверять собственному зрению, однако оно нередко обманывает нас, показывая то, чего в действительности не существует. В такие моменты мы сталкиваемся со зрительными иллюзиями - ошибками зрительного восприятия.

На уроках геометрии, приступая к решению задачи, мы, как правило, первым делом строим чертеж, опираясь на свое зрительное восприятие. Но такой подход к решению задачи часто приводит к ошибочным выводам, а значит к неверному решению. Мы привыкли доверять собственному зрению, однако оно нередко обманывает нас, показывая то, чего в действительности не существует. В такие моменты мы сталкиваемся со зрительными иллюзиями - ошибками зрительного восприятия. Сами ученые создали немало геометрических обманчивых картинок, наглядно демонстрирующих, сколь ограничены возможности человеческого глаза.

На протяжении всей истории люди сталкивались с оптическими иллюзиями того или иного рода. Когда явления, обманывающие зрение и ум, были впервые замечены, они стали волновать воображение людей. С давних пор люди не только поражаются обманам зрения и забавляются зрительными иллюзиями, но и созн ательно используют их в своей практической деятельности. Уже тысячи лет зрительные иллюзии целенаправленно используются в архитектуре для создания определенных пространственных впечатлений, например, для кажущегося увеличения высоты и площади залов. Еще более эффективно зрительные иллюзии используются в изобразительном и цирковом искусстве. Зрительные иллюзии стали основой кинематографии и телевидения, учитываются в полиграфии и в военном деле. Создаваемая при помощи технических средств виртуальная зрительная реальность занимает в жизни современного человека огромное место и тесно переплетается с действительностью.

Физики, математики, психологи и другие ученые пытаются разобраться в необычных явлениях оптических иллюзий, их закономерностях и причинах возникновения. Научное исследование геометрических оптических иллюзий было начато Оппелем в 1854 году. Затем на протяжении полувека появилось около 200 научных работ на эту тему, принадлежащих перу многих выдающихся ученых, в их числе Вундта, Золльнера, Поггендорфа, Кундта, Гельмгольца. В основном в этих работах делались попытки оптического и психологического объяснения многочисленных иллюзии, известных к тому времени. К началу нашего века интерес к оптическим иллюзиям значительно снизился, и эта тема вплоть до последних лет не появлялась в серьезной научной литературе. Отдельные примеры иллюзий приводились, время от времени, в элементарных курсах оптики, занимательных книгах по физике и очень немногочисленных кратких статьях. Существует множество теорий оптических иллюзий. В прошлом веке ученые в основном интересовались психологическим аспектом иллюзий, и почти каждый исследователь создавал свою собственную теорию на этот счет. Однако, как ни странно, но, по-видимому, никому из них не приходило в голову, что оптические иллюзии могут сплошь и рядом вносить существенные погрешности в повседневные научные наблюдения.

Меня заинтересовали оптические иллюзии геометрических фигур. Начав заниматься этой темой, я вскоре поняла, что иллюзии часто приводят к совершенно неверным количественным оценкам реальных геометрических величин. Оказалось, что при этом можно ошибиться от 23 процентов и значительно больше, если глазомерные оценки не проверить масштабной линейкой. В данной работе описаны некоторые полученные мною результаты и приведены рекомендации. Предварительно нужно отметить, что тесты, которые приведены в работе, предлагались школьникам разного уровня подготовки в геометрии, среднего и старшего звена. И те и другие ошибались совершенно одинаково!

Позднее многие другие иллюзии использовались в графике. Среди них единственный в своем роде и относительно новый вид оптической иллюзии известен как «невозможные объекты». Одним из важных навыков для людей, работающих в технической сфере, является способность воспринимать трехмерные объекты в двухмерной плоскости. Невозможные объекты построены благодаря смещенной перспективе, манипуляциям с глубиной и плоскостью, игре света и тени, неясным соединениям, благодаря неправильным и противоречивым направлениям и связям. Из всех существующих оптических иллюзий невозможные объекты, пожалуй, самые завораживающие. Те фокусы, которые они вытворяют с нашим воображением, и та игривость, с которой они смущают человеческую душу, делают их особенно увлекательными. И это используют современные рекламные компании. Поэтому эта тема остается актуальной.

Цель моей работы: изучить влияние оптических иллюзий на восприятие человеком геометрических фигур.

Задачи исследования:

Изучить понятие оптических иллюзий и их основные виды;

Рассмотреть основные виды невозможных геометрических фигур;

Исследовать оптические иллюзии в восприятии чертежей в геометрии

Создать собственные геометрические иллюзии.

1. Теоретическая часть

1.1. Природа зрительных иллюзий

Оптические иллюзии - это, попросту говоря оптический обман нашего мозга. Когда наш глаз получает картинку - включается огромное количество процессов в нашем мозге. Мы начинаем анализировать этот процесс словно компьютер. Начинается анализ расположения основных граней и углов, структура цвета на виде или позиция источника света. И во многих случаях этот анализ неосознанно получается, неточен - происходит коррекция зрительных образов.

В научной и популярной литературе описаны многие сотни зрительных иллюзий. Причины некоторых из них давно установлены, а других - до конца не раскрыты до сих пор. Почему они возникают? Зрительный аппарат человека - сложно устроенная система со вполне определенным пределом функциональных возможностей. В нее входят: глаза, нервные клетки, по которым сигнал передается от глаза к мозгу, и часть мозга, отвечающая за зрительное восприятие. В связи с этим выделяются три основные причины иллюзии:

1) наши глаза так воспринимают идущий от предмета свет, что в мозг приходит ошибочная информация;

2) при нарушении передачи информационных сигналов по нервам происходят сбои, что опять же приводит к ошибочному восприятию;

3) мозг не всегда правильно реагирует на сигналы, приходящие от глаз.

Часто оптические иллюзии возникают сразу по двум причинам: являются результатом специфической работы глаза и ошибочного преобразования сигнала мозгом.

Существуют разные типы иллюзий (рис. 1).

Рис. 1. Типы оптических иллюзий

1.1.1. Искажение размера

Искажение размера - иллюзия, заставляющая усомниться в истинных размерах объектов.

Две равные линии, ограниченные на концах в одном случае сходящимися, а в другом - расходящимися углами, воспринимаются как неодинаковые по величине: линия со сходящимися углами кажется меньшей, а линия с расходящимися углами - большей.

Два совершенно равных кружка воспринимаются как разные по величине в зависимости от того, окружают ли их большие или меньшие кружки.

В первом случае неправильное восприятие величины линий обусловлено тем, что они воспринимаются не изолированно, а как части более сложного целого: линия, входящая в состав большей фигуры, будет восприниматься как большая, и наоборот.

Иллюзия с кружками объясняется действием закона контраста, по которому предмет воспринимается как больший или меньший в зависимости от величины окружающих предметов: предмет будет казаться больше своей действительной величины на фоне мелких предметов, и наоборот.

Столы имеют разные размеры? Ширина красного равна длине зеленого. А ширина зеленого равна длине красного. Не верите?

Также белые предметы на темном фоне зрительно «раздвигают» пространство, расширяя и удлиняя его. Клетчатые, полосатые, заполненные рисунком участки кажутся больше, чем одинаковые с ними по размеру однотонные.

Из двух линий одинакового размера вертикальная всегда воспринимается зрительно, как значительно большая по сравнению с горизонтальной. В связи с этой иллюзией высота предметов кажется нам больше ее действительной величины.

Зрительные иллюзии не только позволяют фигуре выглядеть более или менее идеально, но и обеспечивают определенное эстетическое восприятие художественного образа модели. (Какая из женщин полнее?)

1.1.2. Зрительное искажение

Зрительное искажение - когда предметы кажутся не такими, какие они на самом деле.

Параллельные линии будут восприниматься как непараллельные, если их рассматривать на фоне взаимно пересекающихся косых линий. Круг теряет свою правильную форму, если его рассматривать на фоне кривых линий.

1.1.3. Иллюзии геометрической перспективы

Одинаковые предметы кажутся разной величины, если они воспринимаются как находящиеся на известном удалении друг от друга, при этом ближе расположенный предмет кажется меньше, а далекий - больше своей действительной величины (оба прямоугольника имеют одинаковую форму и размер)

1.1.4. Иллюзии цвета и контраста

Иллюзии цвета и контраста - это когда одинаково раскрашенные предметы видятся по-разному.

Левое полукольцо кажется темнее правого. Все кольцо одного цвета. Точки на перекрестных линиях мерцают то одним, то другим цветом. Они все синие.

В основе данной оптической иллюзии стоит процесс иррадиации. Явление иррадиации (по-латыни - неправильное излучение) заключается в следующем: когда изображение состоит из ярко освященных областей и темных, то происходит перераспределение света. Темные участки как бы забирают часть освящения у светлых. Естественно это происходит только в нашем мозгу. Картина же остается неизменной.

Проанализировав опубликованные отчеты дорожных служб, можно прийти к выводу, что большинство аварий происходит на перекрестках. В сумерки количество происшествий резко возрастает. На любом перекрестке есть светофор. Водитель, который едет по трассе, внезапно увидев огни светофора из-за “передозировки” информации может принять его за обычный фонарь (увидит огни белым). Если долго смотреть на яркие источники зрительной информации, так же возникает цветовая иллюзия.

1.1.5. Движущиеся иллюзии

Иллюзия движения - в этом случае вроде бы статистическое и неподвижное изображение как бы оживает и начинает двигаться.

Некоторые иллюзии возникают в связи с переработкой поступающей информации. Человек иногда видит мир не таким, каков он есть на самом деле, а таким, каким хотел бы его увидеть, поддаваясь сформированным привычкам, потаенным мечтам или страстным желаниям.

Смотри только на крест. Через какое-то время бегущий кружок будет зеленым! Если и дальше продолжать смотреть на крест, то вскоре все лиловые кружки исчезнут, останется только бегущий зеленый... Который на самом деле лиловый? Вы можете заставить девушку в центре вращаться в разные стороны. Для этого сначала посмотрите на левую девушку, потом в центр. Отведите глаза вправо и снова в центр. Девушка вращается в другую сторону.

1.1.6. Иллюзия восприятия глубины

Геометрические объекты, в зависимости от того, как ложатся тени, могут казаться как выпуклыми, так и вогнутыми.

Что изображено: маленький кусочек сыра или «головка» без маленького кусочка? Сколько кубиков?

Восприятие работает очень избирательно, когда дело доходит до значимых, слишком важных для нас событий. Например, человеческое лицо воспринимается по-особому. Человеческое лицо выпукло всегда (даже маску невозможно увидеть вогнутой). Дело, видимо, в том, что человеческое лицо слишком значимо, его невозможно воспринимать в необычном ракурсе.

1.1.7. Оптические иллюзии, встречающиеся в творчестве художников

«Следящие», или «указующие» картины. Наиболее известная в живописи иллюзия относится к «следящим» или «указующим» картинам. Как бы вы не смотрели на изображение, все равно лицо и палец будут обращены к вам. Этот прием широко использовался в плакатном искусстве - хорошо известны плакаты времен гражданской и Великой Отечественной войны, персонажи которых смотрят прямо в глаза зрителя. От дерзкого взгляда дамы из-под полуопущенных век с картины И. Н. Крамского «Неизвестная» невозможно спрятаться. Она всегда смотрит прямо на вас!

1.1.8. «Загадочные» или «двойственные» изображения

Этот прием построен на иллюзии восприятия, когда изображение неожиданно «проступает» среди нагромождения случайных элементов.

На этой картине можно увидеть девушку, сидящую у зеркала. А на этой что видите?

Воспринимая предметы и явления действительности, человек истолковывает их в соответствии с полученными ранее знаниями и своим практическим опытом.

Опора узнавания на отдельные признаки или на отдельные части объектов легко может вести к ошибкам восприятия.

В некоторых случаях, например, при создании иллюзий, возникает необходимость сделать так, чтобы объект нельзя было узнать. Задача заключается в том, чтобы при полной сохранности вещи так изменить ее восприятие, чтобы она утратила свои характерные особенности. Обычно это достигается окраской некоторых частей предмета в цвет, очень близкий к цвету фона, на котором предмет находится. При такой окраске части предмета, которые по цвету приближаются к фону, сливаются с ним, а остальные его части уже не образуют формы данного предмета. Большое значение имеет также нанесение на поверхность предмета таких линий (косых или радиальных), которые меняют его форму, превращая, например, симметричную фигуру в косую и несимметричную, что затрудняет ее узнавание.

1.1.9. Кажущиеся фигуры

Кажущиеся фигуры - когда фигуры, которых на самом деле нет видны. Иллюзия объема на плоском асфальте:

1.1.10. Невозможные фигуры

Невозможные фигуры - фигуры, не существующие в природе, но, существующие в нашем воображении.

Анализ предложенного объяснения оптико-геометрических иллюзий показывает, что, во-первых, все параметры зрительного образа взаимосвязаны, благодаря чему и возникает целостное восприятие, воссоздается адекватная картина внешнего мира. Во-вторых, на восприятие влияют сформированные повседневным опытом стереотипы. Примером того, как можно разрушить целостный образ объекта, служат так называемые «невозможные», противоречивые фигуры, например, невозможный трезубец Нормана Минго и невозможная лестница Пенроуза.

1.1.11. Перевертыши

Перевертыши - картины, которые при переворачивании «превращаются» в другие изображения.

1.1.12. Соотношение фигур и фона

Распознайте что здесь? А здесь саксофонист и лицо женщины. На втором рисунке ваза и два профиля человека.

Оптические иллюзии создают огромные возможности для художников, фотографов, модельеров. Однако инженерам и математикам приходится быть осторожными с чертежами и подкреплять «очевидное» измерениями.

1.2. Иллюзии в живописи

Одним из величайших иллюзионистов был Сальвадор Дали!

Сальвадор Фелипе Хасинто Дали-и-Доменеч родился в 1904 году, а в 10-летнем возрасте уже появились его первые живописные работы. В 18 лет Дали поступил в мадридскую Школу Изящных Искусств Сан-Фернандо. И пусть в учителях он разочаровался и даже не стал сдавать выпускные экзамены, учеба в Школе дала ему великолепное владение академической манерой живописи. В 1925-м в барселонской галерее Дальмау состоялась первая персональная выставка художника. За 85 лет жизни Сальвадор Дали создал более 2 тысяч художественных полотен, написал множество книг, в их числе помимо его знаменитой автобиографии - роман, трактат об искусстве, стихи и поэмы в прозе, сценарии. Кроме того, он проиллюстрировал множество книг других авторов, а также разрабатывал декорации к балетам и пьесам. Идея создания Театра-Музея в Фигерасе, как и основная концепция его наполнения, безраздельно принадлежит самому Дали. Знаменитый художник имел особое зрение и видел не вещи, как большинство из нас, а скорее идеи, заложенные в них.

Наиболее часто Сальвадор Дали писал картины с иллюзиями. Вот некоторые из них:

Дон Кихот

Балерина и череп

Иисус в Иерусалиме

А это картины современного художника Дональда Руста.

1.3. Геометрические иллюзии в архитектуре

Один из способов создать необычное строение, сложный рисунок, нестандартный архитектурный объект - применить знания в области законов оптики и перспективы. Архитекторы давно научились «обманывать» нас с помощью оптических иллюзий... Использование оптических иллюзий в архитектуре - прием далеко не новый. Самый впечатляющий пример - Парфенон, главный храм афинского Акрополя. При строительстве Парфенона архитекторы сделали акцент на колоннах храма. Равномерно уменьшив объем колонн у верхних и нижних оснований, строители добились зрительного ощущения четко выведенной вертикали. Использование подобного эффекта привело к тому, что строение кажется большим по размеру, чем на самом деле.

Иллюзия невозможного Нидерландский художник-график Мариуц Корнелис Эшер вошел в историю своими «невозможными рисунками» зданий и архитектурных объектов, при создании которых он использовал свои знания о психологии восприятия трехмерного пространства. «Невозможные здания» Эшера - трехмерные строения, с обычной, на первый взгляд перспективой, в которых, однако, при внимательном рассмотрении можно увидеть противоречия с основными законами физика пространства.

Знаменитый «Танцующий дом» был построен в Чехословакии в 1992 годы. Сейчас в нем находятся лучшие рестораны Праги. Посетителям открывается великолепный вид на город, а город вот уже больше 10 лет украшает «пританцовывающий» ресторан.

Каждый этаж этого здания, расположенного в Мельбурне, имеет одну и ту же высоту, однако сложный рисунок из темных и светлых прямоугольников в сочетании с параллельными оранжевыми полосами создает совсем иное впечатление. Современные художники используют традиционные приемы и стили в качестве точки отсчета, а затем облекают их в неожиданную оболочку для создания чего-то нового. Так поступил и французский художник Питер Делавье, обернув здание, находящее на реконструкции, непромокаемым брезентом, на котором изобразил то же самое здание в манере Сальвадора Дали. Создается полная иллюзия того, что здание тает на парижском солнце, как мороженое.

2. Практическая часть

2.1. Невозможные фигуры

Из всех существующих оптических иллюзий невозможные объекты, пожалуй, самые завораживающие. Те фокусы, которые они вытворяют с нашим воображением, и та игривость, с которой они смущают человеческую душу, делают их особенно увлекательными. Невозможные объекты противоречат нашим фундаментальным представлениям о восприятии. Например, глядя на какую-либо фигуру в этой книге, мы сначала воспринимаем ее как трехмерный объект, но потом понимаем: что-то здесь не так. Минутой позже нам становится ясно, что объект не может существовать в пространстве, хотя он явно существует на бумаге. Невозможно не двухмерное их представление, а именно трехмерное. Другими словами, удивительные фигуры представляют собой объекты нереального мира: их можно представить себе и даже нарисовать, но в реальности создать нельзя. И именно это делает их привлекательными. Также немаловажно, что невозможные объекты отличаются от других невозможных явлений.

Оказалось, что на протяжении долгого времени психологи использовали геометрические фигуры разного рода при изучении человеческой личности. С начала века было разработано более 200 фигур и иллюзий для анализа психологических аспектов зрительного процесса и умственной деятельности пациентов. Они рассматривали эти объекты и пытались понять их. При помощи таких экспериментов, когда глазу предлагалась противоречивая информация, было получено множество новых сведений о типах личности.

Очень интересно наблюдать за человеком, рассматривающим невозможный объект, и так же интересно наблюдать за тем, как он пытается понять его. Невозможные объекты важны для психологов, выясняющих, что же привлекает внимание людей

Невозможная фигура - эта фигура, изображенная в перспективе таким способом, чтобы выглядеть на первый взгляд обычной фигурой. Однако при более внимательном рассмотрении зритель понимает, что такая фигура не может существовать в трехмерном пространстве. Геометрические фигуры - лучшие источники вдохновения для изобретения невозможных объектов.

1. Невозможный треугольник Пенроуза

Эта фигура - возможно, первый опубликованный в печати невозможный объект. Она появилась в 1958 году в статье под заголовком «Удивительные фигуры, особый вид оптических иллюзий». Ее авторы, отец и сын Лайонелл и Роджер Пенроузы, генетик и математик соответственно, определили этот объект как «трехмерную прямоугольную структуру». Она также получила название «трибар», или «деформированный трибар». В этой статье фигурировали еще два загадочных объекта. Таким образом, «невозможные объекты» были впервые представлены широкой общественности на примере этих трех фигур.

Я попробовала самостоятельно изготовить такую фигуру, она с одной стороны представляет собой треугольник в виде вазы, а с другой форму геометрической фигуры. Я подготовила три отрезка из трубок квадратного сечения, а затем соединила их в кривую линию. Ваза визуально преображается под определенным углом и превращается в объемный треугольник, лежащий на полу. А если в вазу поставить цветок, она словно зависает в пространстве и положение цветка относительно пола становится непонятным.

2. Невозможный куб - куб Эшера

Голландский художник Мориц Корнилис Эшер, родившийся в 1898 году в Леувардене создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей.

Когда он учился в школе, родители планировали, что он станет архитектором, но плохое здоровье не позволило Морицу закончить образование, и он стал художником. До начала 50-х годов он не был широко известен, но после ряда выставок и статей в американских журналах (Time и др.) он получает мировую известность. Среди его восторженных поклонников были и математики, которые видели в его работах оригинальную визуальную интерпретацию некоторых математических законов. Это более интересно тем, что сам Эшер не имел специального математического образования. В процессе своей работы он черпал идеи из математических статьей, в которых рассказывалось о мозаичном разбиении плоскости, проецировании трехмерных фигур на плоскость и неевклидовой геометрии, о чем будет рассказываться ниже. Он был очарован всевозможными парадоксами и в том числе «невозможными фигурами».

Парадоксальные идеи Роджера Пенроуза были использованы во многих работах Эшера. Наиболее интересными для изучения идеями Эшера являются всевозможные разбиения плоскости и логикатрехмерного пространства. Эшер интересовался всеми видами мозаик

Математики доказали, что для регулярного разбиения плоскости подходят только три правильных многоугольника: треугольник, квадрат и шестиугольник. (Нерегулярных вариантов разбиения плоскости гораздо больше. В частности в мозаиках иногда используются нерегулярные мозаики, в основу которых положен правильный пятиугольник.) Эшер использовал базовые образцы мозаик, применяя к ним трансформации, которые в геометрии называются симметрией, отражение, смещение и др. Также он исказил базовые фигуры, превратив их в животных, птиц, ящериц и проч. Эти искаженные образцы мозаик имели трех-, четырех - и шестинаправленную симметрию, таким образом сохраняя свойство заполнения плоскости без перекрытий и щелей.

Самым интересным для меня является так называемый куб Эшера, который я изготовила. Кажется, что самим существованием этот куб нарушает все основные геометрические законы. Разгадка, как всегда с невозможными фигурами, довольна проста: человеческому глазу свойственно воспринимать двумерные изображения как трехмерные объекты.

3. Невозможные склоны

Это лучший геометрический оптический обман зрения 2010 от Кокичи Сугихара потряс весь мир, в своей иллюзии невозможные склоны автор демонстрирует, как шарики, преодолевая гравитацию, не скачиваются, а наоборот подымаются, как будто на них действует некая магнитная сила.

Принцип оптической иллюзии основан на склоняемости мозга интерпретировать фотографии объектов, в нашем случаи мы интерпретировали все пять вертикальных опор, где длинные нам казались высокие. Иначе говоря, когда сложная модель отображается на плоской, двухмерной поверхности дисплея или листа бумаги, то нам тяжело разглядеть истинный объект и наш мозг представляет объект знакомый ему формы.

Я самостоятельно используя макеты изготовила такие склоны на бумаге и склеила их, эффект превзошел все ожидания маленькие шарики действительно катились вверх.

2.2. Геометрические фигуры неправильной формы

Таким образом, можно сказать, что мир иллюзий чрезвычайно интересен и многообразен.

Вначале своей работы я выдвинула гипотезу: не всегда то, что мы видим, на самом деле является таковым. Для того чтобы проверить ее мне пришлось изучить литературу и обратиться к Интернет-ресурсам по данному вопросу. Я познакомилась с различными видами иллюзий. Меня больше всего поразило то, что иллюзии имеют большое значение в жизни человека. Геометрические иллюзии создают огромные возможности для художников, архитекторов, фотографов, модельеров. Однако инженерам и математикам приходится быть осторожными с чертежами и подкреплять «очевидное» реальными измерениями и фактами.

1. Комната Эйсма

Комната Эймса - помещение неправильной геометрической формы, используемое для создания трехмерной оптической иллюзии. Была спроектирована американским офтальмологом Альбертом Эймсом в 1946 году.

Комната Эймса построена так, что спереди она выглядит как обычная комната кубической формы с задней стенкой и двумя боковыми стенами, параллельными друг другу и перпендикулярными к горизонтальным плоскостям пола и потолка. Однако истинная форма комнаты трапециевидная: стены наклонены, потолок и пол также находятся под наклоном, а правый угол находится гораздо ближе к зашедшему в комнату наблюдателю, чем левый, или наоборот.

В результате оптической иллюзии человек, стоящий в одном углу, кажется наблюдателю гигантом, в то время как человек, стоящий в другом углу, кажется карликом. Иллюзия настолько убедительна, что человек, идущий вперед и назад от левого угла в правый угол, «растет» или «уменьшается» на глазах.

Исследования показали, что иллюзия может быть создана без использования стен и потолка, - для ее создания достаточно видимого горизонта (который в действительности не является горизонтальным) против соответствующего фона, а также чтобы взгляд наблюдателя падал на объект, чья высота превышает высоту этого горизонта.

Принцип комнаты Эймса широко используется в кино и на телевидении для создания спецэффектов, когда человека на самом деле нормального роста необходимо показать в качестве гиганта или карлика по сравнению с другими.

Используя заготовку у меня получилось создать такую геометрическую иллюзию.

2. Иллюзорный справочник школьника

Зрительная иллюзия - это настоящий обман зрения. Я сделала так называемый справочник-невидимка для школьника, срезав листы книжечки под разными углами, мне удалось добиться того, что при определенным перелистывании страницы оказываются совершенно чистыми или содержащими графики и формулы основных разделов математики.

Таким образом собранные вместе листы справочника срезанные под разными углами, приобрели геометрические фигуры неправильной формы, что позволило создать красочную геометрическую иллюзию.

2.3. Исследование иллюзий движения геометрических фигур

Среди учащихся начального и среднего звена гимназии мною был проведен следующий эксперименты:

Эксперимент № 1

Необходимо было определить движутся круги или нет

Эксперимент показал, что 93% опрошенных подверглись иллюзии.

Эксперимент №2.

Мы часто видим сходящиеся вдали параллельные линии (полотно железной дороги, шоссе и т. п.). Они кажутся сходящимися в некоторой точке горизонта. Зрение словно пытается убедить нас в том, что вопреки законам геометрии параллельные прямые пересекаются. Это явление называется перспективой. Эта иллюзия объясняется тем, что объект (шпала), находящийся на различных расстояниях от наблюдателя, виден под разными углами зрения и по мере удаления вдоль параллельных прямых (рельсов) его угловой размер уменьшается, что приводит к видимому уменьшению расстояния между линиями (в данном случае оно определяется величиной шпалы).

Очевидно, когда угол зрения достигает некоторой «критической» величины, глаз перестает различать удаляющийся объект как тело, имеющее размеры, и прямые «сливаются» для него в одну точку.

Существует предельное значение угла зрения - наименьшее значение, при котором глаз способен видеть раздельно две точки.

Учащимся 10-11 классов была предложена иллюзия тоннеля.

70% учащихся опровергли параллельность линий тоннеля, а 92% согласились с тем, что тоннель движется.

Заключение

Наше зрение несовершенно и иногда мы видим не то, что существует в действительности. Но тот факт, что огромное большинство людей получают иногда одинаковые ошибочные зрительные впечатления, говорит об объективности нашего зрения и о том, что оно, дополняемое мышлением и практикой, дает нам относительно точные сведения о предметах внешнего мира. С другой стороны, тот факт, что разные люди в процессе зрительного восприятия обладают различной способностью ошибаться, иногда видят в предметах то, чего другие не замечают, говорит о субъективности наших зрительных ощущений и об их относительности. Мои исследования и практическая работа по созданию собственных иллюзий полностью подтвердили выдвинутую гипотезу: не всегда то, что мы видим, на самом деле является таковым.

В этой работе было выяснено, что учащиеся разного возраста склонны к иллюзиям. Изучив литературу по данной теме, проведя ряд экспериментов по выявлению процента детей, поддающихся иллюзиям, и,выполнив практическую работу по созданию собственных иллюзий геометрических фигур, я пришла к следующим выводам:

Глаз любого человека видит мир одинаково, но восприятие увиденного - это процесс мышления человека. Поэтому каждый человек воспринимает мир по-своему. И надо уважать мнение каждого.

Образное мышление, воображение можно развивать, используя в различные иллюзорные картины или создавая их самим. Это даст возможность увидеть всю многогранность окружающего нас мира. Также это разнообразит наш досуг.

Не стоит забывать, что оптические иллюзии сопровождают нас в течение всей жизни. Поэтому знание основных видов, причин и возможных последствий их воздействия на человека необходим. Это поможет анализировать получаемую картинку, понимать, когда глаза нас обманывают, а когда изображение полностью реально.

Тема иллюзий очень интересна и она может стать продолжением еще многих исследований и не только в математике.

И если, глядя на картину, мы видим разное, то, что можно сказать о лучшей и очень сложной картине - человеке???

Библиографическая ссылка

Костюкова Л.Ю. ИЛЛЮЗИИ ГЕОМЕТРИЧЕСКИХ ФИГУР // Международный школьный научный вестник. – 2018. – № 5-3. – С. 408-421;
URL: http://school-herald.ru/ru/article/view?id=685 (дата обращения: 03.03.2019).

Обман зрения - картинки иллюзии с пояснениями

Не относитесь серьезно к оптическим иллюзиям, пытаясь понять и разгадать их, просто так работает наше зрение. Так человеческий мозг обрабатывает видимый свет отраженный картинок.
Необычные формы и сочетания этих картинок позволяют добиться обманчивого восприятия, в результате которого кажется, что предмет движется, меняет цвет или возникает дополнительная картинка.
Все изображения сопровождаются пояснениями: как и сколько нужно смотреть на картинку, чтобы увидеть то, чего нет на самом деле.

Для начала, одна из самых обсуждаемых иллюзий в сети - 12 чёрных точек. Фишка в том, что вы не можете увидеть их одновременно. Научное объяснение этому феномену обнаружено немецким физиологом Людимаром Германом в 1870 году. Человеческий глаз перестает видеть полную картину из-за латерального торможения в сетчатке.


Эти фигуры движутся с одинаковой скоростью, но наше зрение говорит нам об обратном. На первой гифке четыре фигуры движутся одновременно пока они примыкают друг к другу. После разъединения возникает иллюзия, что они движутся по черно белым полоскам независимо друг от друга. После исчезновения зебры на второй картинке можно убедится в синхронности перемещения желтого и синего прямоугольников.


Внимательно смотрите на черную точку в центре фото пока таймер отсчитывает 15 секунд, после чего черно белое изображение станет цветным, то есть трава зеленой, небо голубым и так далее. Но если вы не будете пялиться в эту точку (чтобы себя развеселить), то картинка останется черно белой.


Не отрываясь смотрите на крестик и вы увидите, как по фиолетовым кружкам побежит зеленое пятно, а потом они совсем исчезнут.

Если долго смотреть на зеленую точку, то желтые точки исчезнут.

Пристально смотрите на черную точку и серая полоса внезапно станет синей.

Если разрезать плитку шоколада 5 на 5 и переставить все куски в показанном порядке, то появится лишний кусочек шоколада. Проделайте этот трюк с обычной шоколадкой и она никогда не закончится. (Шутка).

Из этой же серии.

Сосчитайте футболистов. Теперь подождите 10 секунд. Упс! Части картинки всё те же, но куда-то исчез один футболист!


Чередование черных и белых квадратиков в составе четырех кругов создает иллюзию спирали.


Если смотреть в середину этой анимационной картинки, то пойдете по коридору быстрее, если перевести взгляд вправо или влево, то медленней.

На белом фоне серая полоса выглядит однородной, но стоит белому фону смениться, как серая полоса сразу приобретает множество оттенков.

Лёгким движением руки вращающийся квадрат превращается в хаотично движущиеся линии.

Анимация получается в результате накладывания на рисунок черной сетки. На наших глазах статичные предметы начинают двигаться. Даже кошка реагирует на это движение.


Если смотреть на крестик в центре картинки, то периферическое зрение превратит звездные лица голливудских актеров в уродов.

Две картинки Пизанской башни. На первый взгляд кажется, что башня справа наклоняется больше, чем башня слева, однако на самом деле обе эти картинки одинаковые. Причина кроется в том, что визуальная система человека рассматривает два изображения как часть единственной сцены. Поэтому нам кажется, что обе фотографии не симметричны.


В какую сторону едет поезд в метро?

Вот так простым изменением цвета можно добиться того, что картинка оживёт.

Смотрим ровно 30 секунд не моргая, затем переводим взгляд на чье-нибудь лицо, предмет или на другую картинку.

Разминка для глаз… или для мозга. После перестановки частей треугольника, внезапно, появляется свободное место.
Ответ прост: на самом деле фигура не является треугольником, «гипотенуза» нижнего треугольника представляет собой ломаную линию. Это можно определить по клеткам.

На первый взгляд кажется, что все линии изогнуты, однако на самом деле они параллельны. Иллюзия была обнаружена Р. Грегори в кафе Wall (Стена) в Бристоле. Поэтому этот парадокс называется "Стена в кафе".

Смотрите тридцать секунд на середину картинки, после чего переместите взгляд на потолок или белую стену и поморгайте. Кого вы увидели?

Оптический эффект, создающий у зрителя ложное представление о том, как стоит стул. Иллюзия обусловлена оригинальной конструкцией стула.

Английское NO (НЕТ) превращается в YES (ДА) с помощью изогнутых букв.

Каждый из этих кругов вращается против часовой стрелки, но если зафиксировать взгляд на одном из них, то будет казаться, что второй круг вращается по часовой стрелке.

3 D рисунок на асфальте

В какую сторону вращается колесо обозрения? Если посмотреть налево, то по часовой стрелке, если налево, то против часовой стрелки. Возможно у вас будет наоборот.

В это трудно поверить, но квадраты в центре неподвижны.

Обе сигареты, на самом деле, одинакового размера. Просто наложите на монитор две линейки к сигаретам сверху и снизу. Линейки будут параллельны.

Аналогичная иллюзия. Конечно же, эти сферы одинаковы!

Капельки колышутся и “плывут”, хотя на самом деле они остаются на своих местах, а движутся только колонны на заднем фоне.

Мы воспринимаем окружающее нас как данность: солнечный луч, играющий бликами на поверхности воды, переливы красок осеннего леса, улыбку ребенка... Мы не сомневаемся, что реальный мир именно таков, каким мы его видим. Но так ли это на самом деле? Почему иногда зрение нас подводит? Как мозг человека интерпретирует воспринимаемые объекты?

Человек воспринимает большую часть информации об окружающем мире благодаря зрению, но мало кто задумывается о том, как именно это происходит. Чаще всего глаз считают похожим на фотоаппарат или телекамеру, проецирующую внешние объекты на сетчатку, которая является светочувствительной поверхностью. Мозг "смотрит" на эту картинку и "видит" все, что нас окружает. Однако не все так просто. Во-первых, изображение на сетчатке перевернуто. Во-вторых, из-за несовершенных оптических свойств глаза, таких как абберация, астигматизм и рефракция, картинка на сетчатке расфокусирована или размазана. В-третьих, глаз совершает постоянные движения: скачки при рассматривании изображений и при зрительном поиске, мелкие непроизвольные колебания при фиксации на объекте, относительно медленные, плавные перемещения при слежении за движущимся объектом. Таким образом, изображение находится в постоянной динамике. В-четвертых, глаз моргает приблизительно 15 раз в минуту, а это значит, что изображение через каждые 5-6 секунд перестает проецироваться на сетчатку. Поскольку человек обладает бинокулярным зрением, то фактически он видит два размытых, дергающихся и периодически исчезающих изображения, а значит, возникает проблема совмещения информации, поступающей через правый и левый глаз.

Иллюзии - это искаженное, неадекватное отражение свойств воспринимаемого объекта. В переводе с латыни слово "иллюзия" означает "ошибка, заблуждение". Это говорит о том, что иллюзии с давних времен интерпретировались как некие сбои в работе зрительной системы. Изучением причин их возникновения занимались многие исследователи. Основной вопрос, интересующий не только психологов, но и художников, - как на основе двухмерного изображения на сетчатке воссоздается трехмерный видимый мир. Возможно, зрительная система использует определенные признаки глубины и удаленности, например, принцип перспективы, предполагающий, что все параллельные линии сходятся на уровне горизонта, а размеры объекта по мере его удаления от наблюдателя пропорционально уменьшаются. Мы не осознаем, насколько сильно изменяется проекция объекта на сетчатке по мере его удаления.

Одна из самых известных оптико-геометрических иллюзий - (см. рис. 1).

Посмотрев на этот рисунок, большинство наблюдателей скажет, что левый отрезок со стрелочками наружу длиннее правого со стрелочками, направленными внутрь. Впечатление настолько сильное, что, согласно экспериментальным данным, испытуемые утверждают, что длина левого отрезка на 25-30% превышает длину правого.

Еще один пример оптико-геометрических иллюзий - (рис. 2)

Также иллюстрирует искажения восприятия размера. Понцо нарисовал два одинаковых отрезка на фоне двух сходящихся линий, наподобие уходящего вдаль железнодорожного полотна. Верхний отрезок кажется крупнее, поскольку мозг интерпретирует сходящиеся линии как перспективу (как две параллельные линии, сходящиеся на расстоянии). Поэтому мы думаем, что верхний отрезок расположен дальше, и полагаем, что его размер больше. Кроме сходящихся линий силу эффекту добавляет уменьшающееся расстояние между промежуточными горизонтальными отрезками.

Значение перспективы для восприятия иллюзии Мюллера-Лайера иллюстрирует рис. 3. (Желтые линии в углах стены имеют совершенно одинаковые размеры). В повседневной жизни нас окружает множество прямоугольных предметов: комнаты, окна, дома. Поэтому изображение, на котором линии расходятся, можно воспринимать как угол здания, расположенный дальше от наблюдателя, в то время как рисунок, на котором линии сходятся, воспринимается как угол здания, расположенный ближе. Аналогично можно объяснить иллюзию Понцо. Косые линии, сходящиеся в одной точке, ассоциируются либо с длинным шоссе, либо с железнодорожным полотном, на котором лежат два предмета. Зрительные шаблоны, сформированные таким "прямоугольным" окружением, и заставляют нас ошибаться.

Анализ предложенного объяснения оптико-геометрических иллюзий показывает, что, во-первых, все параметры зрительного образа взаимосвязаны, благодаря чему и возникает целостное восприятие, воссоздается адекватная картина внешнего мира. Во-вторых, на восприятие влияют сформированные повседневным опытом стереотипы, например, представления о том, что мир трехмерен, начинающие работать, как только в картинку вносятся признаки, указывающие на перспективу.

Примером того, как можно разрушить целостный образ объекта, служат так называемые " ", противоречивые фигуры, картины с нарушенной перспективой.

Если человек, сидя в вагоне поезда, фиксирует взгляд на пейзаже за окном, ему кажется, что объекты, находящиеся ближе точки фиксации, движутся на него, причем настолько быстро, что ему порой не удается различить детали. А предметы, расположенные на заднем плане, т.е. за точкой фиксации, движутся вместе с наблюдателем достаточно медленно. Это явление называется .

Рис.7. Двигательный
параллакс

Существуют динамические иллюзии, возникающие при использовании этого явления для плоских изображений. На рис. 7 мы видим пример такой иллюзии. Круги на переднем плане движутся быстро, а на заднем медленно. Наблюдателю кажется, что плоская картинка превращается в объемную.

Еще одна динамическая иллюзия - автокинетическое движение. Если вы смотрите на светящуюся точку в темной комнате, то можете наблюдать удивительное явление. Эксперимент предельно прост: нужно зажечь сигарету и положить ее в пепельницу. Непременные условия возникновения иллюзии - в комнате должно быть так темно, чтобы, кроме этого светового пятнышка, ничего больше не было видно. При этом взгляд нужно тщательно фиксировать на светящейся точке в течение нескольких минут. Вы, зная, что сигарета неподвижно лежит в пепельнице, через некоторое время вдруг обнаружите, что ее огонек перемещается, совершая размашистые движения, резкие скачки, описывает круги по комнате. Амплитуда движений может быть довольно большой. Причем понимание того, что это - иллюзия, никак не влияет на результаты наблюдения. Гипотезы, объясняющие этот феномен движениями глаз, были опровергнуты экспериментами, в которых одновременно регистрировались движения глаз и отчет наблюдателя о том, в каком направлении перемещается световое пятно. Сопоставление полученных данных показало, что соответствия между реальными движениями глаз и видимым движением объекта не существует.

Но, пожалуй, величайшая зрительная иллюзия - это кино и телевидение. Мы можем смотреть передачи благодаря стробоскопическому эффекту, основанному на одном из важнейших свойств зрительной системы - инерционности. Наблюдателю в течение нескольких секунд предъявляют статичную светящуюся точку в одном месте экрана, а через 60-80 мс показывают ее в другом месте. Человек видит не два разных объекта, вспыхнувших в разных местах, а перемещение объекта из одного положения в другое. Зрительная система интерпретирует последовательные и связанные между собой изменения как движение. Именно благодаря этому эффекту мы видим на экранах не ряд быстро сменяющих друг друга кадров, а единую движущуюся картину.

Известно, что первые шаги кинематографа сопровождал курьезный эпизод: когда зрители увидели на экране приближающийся поезд, они вскочили и с криком убежали - им показалось, что он несется прямо на них. Этот феномен называется лупингом. Если человеку продемонстрировать световое пятно, которое вдруг начнет расширяться во все стороны, ему покажется, что оно движется прямо на него, а не увеличивает свой размер. Причем иллюзия будет настолько сильной, что заставит невольно отстраниться от экрана, как от объекта, представляющего угрозу. Нечто похожее можно увидеть, наблюдая за любителями компьютерных игр: кто-то наклоняется в сторону, пытаясь спрятаться от летящих в него пуль, кто-то отшатывается от несущегося в него огненного шара. Очевидно, что в случае, когда нет однозначной информации об изменении формы объекта, зрительная система предпочитает увеличение сетчаточного изображения трактовать как приближение объекта.

Некоторые иллюзии возникают в связи с переработкой поступающей информации. Человек иногда видит мир не таким, каков он есть на самом деле, а таким, каким хотел бы его увидеть, поддаваясь сформированным привычкам, потаенным мечтам или страстным желаниям. Он ищет нужную форму, цвет или другое отличительное качество объекта среди представленных во внешнем мире. Это свойство избирательности называется феноменом перцептивной готовности. Посмотрите на рис. 8.


Рис.8 Иллюзии переработки информации

Символ в центре - буква или цифра? Если рассматривать горизонтальный зрительный ряд, состоящий из букв, в центре будет "В" - к этому наблюдатель подготовлен буквенным рядом. Если смотреть на вертикальный ряд, окажется, что это вовсе не буква, а цифра 13 - к такому решению подтолкнули цифры.

Подобные иллюзии обусловлены более высоким уровнем обработки информации, когда характер решаемой задачи определяет то, что воспринимает человек в окружающем мире. Интересны особенности избирательности восприятия. Если сказать человеку: в этой книге есть твоя фамилия, - то он сможет, очень быстро пролистав страницы, найти упоминание о себе. Причем ни о каком прочтении текста речи не идет. Такими навыками обладают корректоры, непостижимым образом вычленяющие в тексте ошибки, незаметные обычному читателю.

В данном случае речь идет о профессиональных навыках, приобретаемых в процессе деятельности.

Восприятие работает очень избирательно, когда дело доходит до значимых, слишком важных для нас событий. Например, человеческое лицо воспринимается по-особому. Негатив снимка лица практически не опознается, кажется совершенно неинформативным. Если геометрические объекты, в зависимости от того, как ложатся тени, могут казаться как выпуклыми, так и вогнутыми, то человеческое лицо выпукло всегда (даже маску невозможно увидеть вогнутой). Парадоксально восприятие перевернутого изображения лица (рис. 9)


Рис.9. Иллюзии переработки информации

Если рассматривать две фотографии лиц, повернутые вверх ногами, кажется, что они не различаются: глаза, нос, губы, волосы - все идентично. Но, перевернув эти портреты, можно убедиться, что они абсолютно разные. На одном - спокойная и милая улыбка Джоконды, на другом - ужасная гримаса. Дело, видимо, в том, что человеческое лицо слишком значимо, его невозможно воспринимать в необычном ракурсе.

Важнейшим свойством нашего глаза является его способность различать цвета. Одним из свойств, относящихся к цветному зрению можно считать явление смещения максимума относительной видимости при переходе от дневного зрения к сумеречному. При сумеречном зрении (низких освещенностях) не только понижается чувствительность глаза к восприятию цветов вообще, но и в этих условиях глаз обладает пониженной чувствительностью к цветам длинноволнового участка видимого спектра (красный, оранжевый) и повышенной чувствительностью к цветам коротковолновой части спектра (синий, фиолетовый).

Можно указать на ряд случаев, когда мы при рассматривании цветных объектов также встречаемся с ошибками зрения или иллюзиями.

Во-первых, иногда о насыщенности цвета объекта мы ошибочно судим по яркости фона или по цвету других, окружающих его предметов. В этом случае действуют также закономерности контраста яркостей: цвет светлеет на темном фоне и темнеет на светлом (рис. 10).

Великий художник и ученый Леонардо да Винчи писал: "Из цветов равной белизны тот кажется более светлым, который будет находится на более темном фоне, а черное будет казаться более мрачным на фоне большей белизны. И красное покажется более огненным на более темном фоне, а также все цвета, окруженные своими прямыми противоположностями."

Во-вторых существует понятие собственно цветовых или хроматических контрастов, когда цвет наблюдаемого нами объекта изменяется в зависимости от того, на каком фоне мы его наблюдаем. Можно привести множество примеров воздействия на глаз цветовых контрастов. Гете, например, пишет: "Трава, растущая во дворе, вымощенном серым известняком, кажется бесконечно прекрасного зеленого цвета, когда вечерние облака бросают красноватый, едва заметный отсвет на камни." Дополнительный цвет зари - зеленый; этот контрастный зеленый цвет, смешиваясь с зеленым цветом травы и дает "бесконечно прекрасный зеленый цвет".

Гете описывает также явление так называемых "цветных теней". "Один из самых красивых случаев цветных теней можно наблюдать в полнолуние. Свет свечи и лунное сияние можно вполне уравнять по интенсивности. Обе тени могут быть сделаны одинаковой силы и ясности, так, что оба цвета будут вполне уравновешиваться. Ставят экран так, чтобы свет полной луны падал прямо на него, свечу же помещают несколько сбоку на надлежащем расстоянии; перед экраном держат какое-нибудь прозрачное тело. Тогда возникает двойная тень, причем та, которую отбрасывает луна и которую в то же время освещает свеча, кажется резко выраженного красновато-темного цвета, и, наоборот, та, которую отбрасывает свеча, но освещает луна - прекраснейшего голубого цвета. Там, где обе тени встречаются и соединяются в одну, получается тень черного цвета."

Слепое пятно. Наличие слепого пятна на сетчатой оболочке глаза впервые открыл в 1668 г. известный французский физик Э. Мариотт. Свой опыт, позволяющий убедиться в наличии слепого пятна, Мариотт описывает следующим образом: "Я прикрепил на темном фоне, приблизительно на уровне глаз, маленький кружочек белой бумаги и в то же время просил другой кружочек удерживать сбоку от первого, вправо на расстоянии около двух футов), но несколько пониже так, чтобы изображение его упало на оптический нерв моего правого глаза, тогда как левый я зажмурю. Я стал против первого кружка и постепенно удалялся, не спуская с него правого глаза. Когда я был в расстоянии 9 футов, второй кружок, имевший величину около 4 дюймов, совсем исчез из поля зрения. Я не мог приписать это его боковому положению, ибо различал другие предметы, находящиеся еще более сбоку, чем он; я подумал бы, что его сняли, если бы не находил его вновь при малейшем передвижении глаз".

Известно, что Мариотт забавлял английского короля Карла II и его придворных тем, что учил их видеть друг друга без головы. Сетчатая оболочка глаза в том месте, где в глаз входит зрительный нерв, не имеет светочувствительных окончаний нервных волокон (палочек и колбочек). Следовательно, изображения предметов, приходящиеся на это место сетчатки, не передаются мозгу.

Вот еще интересный пример. На самом деле круг идеально ровный. Стоит прищуриться и мы это видим.

К этому воздействию относятся иллюзии или оптические явления, вызываемые цветом и изменяющие внешний вид предметов. Рассматривая оптические явления цвета, все цвета можно условно разделить на две группы: красные и синий, т.к. в основном цвета по своим оптическим свойствам будут тяготеть к какой-нибудь из этих групп. Исключение составляет зеленый цвет. Светлые цвета, например белый или желтый создают эффект иррадиации, они как бы распространяются на расположенные рядом с ними более темные цвета и уменьшают окрашенные в эти цвета поверхности. Для примера, если через щель дощатой стены проникает луч света, то щель кажется шире, чем в действительности. Когда солнце светит сквозь ветви деревьев, ветви эти кажутся более тонкими, чем обычно.

Это явление играет существенную роль при конструировании шрифтов. В то время, как, например, буквы E и F сохраняют свою полную высоту, высота таких букв как O и G, несколько уменьшаются, еще больше уменьшаются из-за острых окончаний буквы A и V. Эти буквы кажутся ниже общей высоты строки. Чтобы они казались одинаковой высоты с остальными буквами строки, их уже при разметке выносят несколько вверх или вниз за приделы строки. объясняется и различное впечатление от поверхностей, покрытых поперечными или продольными полосками. Поле с поперечными полосками кажется более низким, чем поле с продольными, так как белый цвет окружающий поля проникает наверху и внизу между полосками и визуально уменьшает высоту поля.

Основные оптические особенности групп красных и синих цветов.

Желтый цвет зрительно как бы приподнимает поверхность. Она кажется к тому же более обширной из за эффекта иррадиации. Красный цвет приближается к нам, голубой, наоборот удаляется. Плоскости, окрашенные в темно-синий, фиолетовый и черный цвета, зрительно уменьшаются и устремляются книзу.

Зеленый цвет - наиболее спокойный из всех цветов. Так же нужно отметить центробежное движение желтого цвета и центростремительное синего.

Первый цвет колет глаза, во втором глаз утопает. Это воздействие увеличивается, если к нему добавить различие в светлоте и темноте, т.е. воздействие желтого увеличится при добавлении к нему белого цвета, синего - при утемнении его черным.

Академик С. И. Вавилов по поводу устройства глаза пишет: "Насколько проста оптическая часть глаза, настолько сложен его воспринимающий механизм. Мы не только не знаем физиологического смысла отдельных элементов сетчатки, но не в состоянии сказать, насколько целесообразно пространственное распределение светочувствительных клеток, к чему нужно слепое пятно и т. д. Перед нами не искусственный физический прибор, а живой орган, в котором достоинства перемешаны с недостатками, но все неразрывно связано в живое целое".

Слепое пятно, казалось бы, должно мешать нам видеть весь предмет, но в обычных условиях мы этого не замечаем.

Во-первых, потому, что изображения предметов, приходящиеся на слепое пятно в одном глазу, в другом проектируются не на слепое пятно; во-вторых, потому, что выпадающие части предметов невольно заполняются образами соседних частей, находящихся в поле зрения. Если, например, при рассматривании черных горизонтальных линий некоторые участки изображения этих линий на сетчатке одного глаза придутся на слепое пятно, то мы не увидим разрыва этих линий, так как другой наш глаз восполнит недостатки первого. Даже при наблюдении одним глазом наш рассудок возмещает недостаток сетчатки и исчезновение некоторых деталей предметов из поля зрения не доходит до нашего сознания.
Слепое пятно достаточно велико (на расстоянии двух метров от наблюдателя из поля зрения может исчезнуть даже лицо человека), однако при обычных условиях видения подвижность наших глаз устраняет этот "недостаток" сетчатой оболочки.

Астигматизмом глаза называется его дефект, обусловленный обычно несферической - (торической) формой роговой оболочки и иногда несферической формой поверхностей хрусталика. Астигматизм человеческого глаза был впервые обнаружен в 1801 г. английским физиком Т. Юнгом. При наличии этого дефекта (кстати, не у всех людей проявляющегося в резкой форме) не происходит точечного фокусирования лучей, параллельно падающих на глаз, вследствие различного преломления света роговицей в различных сечениях. Астигматизм резко выраженный исправляется очками с цилиндрическими стеклами, которые преломляют световые лучи только в направлении, перпендикулярном к оси цилиндра.

Глаза, совершенно свободные от этого недостатка, у людей встречаются редко, в чем легко можно убедиться. Для испытания глаз на астигматизм врачи-окулисты часто применяют специальную таблицу, где двенадцать кружков имеют штриховку равной толщины через одинаковые интервалы. Глаз, обладающий астигматизмом, увидит линии одного или нескольких кружков более черными. Направление этих более черных линий позволяет сделать вывод о характере астигматизма глаза.

Если астигматизм обусловлен несферической формой поверхности хрусталика, то при переходе от ясного видения предметов горизонтальной протяженности к рассматриванию вертикальных предметов человек должен изменить аккомодацию глаз. Чаще всего расстояние ясного видения вертикальных предметов меньше, чем горизонтальных.

Экспериментальное исследование процесса восприятия реальных объектов - двух равных по величине реек на фоне рельсов железнодорожного пути - показало, что воспринимаемая величина дальней рейки была либо меньшей (в подавляющем большинстве проб), либо равной воспринимаемой величине ближней рейки в зависимости от способа восприятия и дистанции наблюдения. «Иллюзия» восприятия большей относительной величины дальней рейки имела место лишь в очень редких случаях.

Это отличие результатов процесса восприятия реального объекта и его абстрактного изображения на плоскости обусловлена различием в содержании образующихся отношений в процессе отражения свойств того и другого объекта восприятия. Таким образом, процессы восприятия реального объекта и его изображения, отличающиеся по объективному содержанию образующихся в этих процессах отношений, а также условиям восприятия, неправомерно считать идентичными процессами.

Именно многообразие анизотропных отношений является той непосредственно-чувственной основой полуфункциональности процесса восприятия, которая обеспечивает возможность отражения человеком различных свойств и отношений объектов при разных условиях и задачах действия с ними.