Что делает курага для организма. Чем полезна курага? Курага: полезные свойства и противопоказания. Как хранить сухофрукты

Дельфин обладает недостижимой для созданных человеком приборов эффективностью гидроакустической локацией. Он лоцирует дробинку, упавшую в воду на расстоянии 15м; различает размеры предметов одинаковой формы, отличающиеся на единицы процентов, их материал; различает подобно томографу детали внутреннего строения объектов, находящихся в воде или в слое ила, их форму и другие параметры, обнаруживает съедобную рыбу на расстоянии три километра и отличает от той, которая не идет в пищу.

Это достигается совершенством системы гидролокатор-мозг. На рисунке приведена сугубо схематическая структура функционирования гидролокатора дельфина. По эхолокационным сигналам дельфинов ученые смогли выяснить, как эти морские млекопитающие «видят» находящегося в воде человека. Сонарные сигналы, записанные подводным микрофоном, были преобразованы в картинки. Об этом сообщает Daily Mail.

И вот как это выглядит …

Исследование проведено в дельфинарии города Пуэрто-Авентурас (штат Кинтана-Роо, Мексика). Дайвер Джим МакДоноу (Jim McDonough) надел грузовой пояс и активно выдыхал воздух. Было принято решение не использовать акваланг, так как пузырьки от него повлияли бы на исход эксперимента. Сигналы (записанное на микрофон эхо от сигналов дельфина, направленных в сторону МакДоноу) были переданы британскому ученому Джону Стюарту Риду (John Stuart Reid) - специалисту по акустической физике, создателю аппарата визуализации звука CymaScope.

Основной принцип работы аппарата - преобразование звуковых вибраций в колебания воды. Сначала ученые загрузили последовательность ультразвуковых эхолокационных сигналов дельфина в CymaScope, поставив камеру в режим воспроизводства видео. На поверхности воды они увидели некую странную форму. Затем они проиграли видео назад, кадр за кадром, и через некоторое время увидели смутный силуэт человека. Компьютерная обработка изображения принесла новые детали (в частности, исследователи смогли разглядеть грузовой пояс МакДоноу).

Ранее (в 2012 году) с помощью той же методики биологи выяснили, как животные воспринимают неодушевленные объекты.

Таким образом, эхолокация позволяет дельфинам «увидеть» не только тени объектов, но и очертания их поверхности. «Мы думаем, что дельфины могут пользоваться звуко-визуальным языком - языком картинок, которыми они делятся друг с другом (кодируя картинки эхолокационными сигналами - прим. «Ленты.ру» )», - заявил автор исследования Джек Кассевиц (Jack Kassewitz).

А теперь давайте все же подробнее изучим как это работает.

Носовой канал (1 ) , идущий от дыхала к легким соединяет три пары воздушных мешков (2) , представляющие собой полости, окруженные системой радиальных мышц.

Мембраны, находящиеся в месте соединения мешков с носовым каналом, при продувании воздуха из левого мешка в правый или наоборот генерируют ультразвуковые колебания, которые фокусируются с помощью рефлектора (3) , представляющего собой параболическое углубление в передней части черепа и акустической линзы (4) , представляющей собой жировое образование, окруженное системой мышц, изменяющих при необходимости его форму и, следовательно, фокусное расстояние.

В результате образуется ультразвуковой луч (5) , частота и диаграмма направленности которого могут меняться. Лоцируемый объект 6 рассеивает падающее на него излучение и воспринимается антенной системой в виде трех областей (7) , расположенных на коже раструма и нижней челюсти дельфина.Эти области образуются акустическими рецепторами кожи с плотностью распределения около 600 единиц на 1 кв.см. и представляют собой, по сути, пространственную голографическую приемную систему.

Приведенная схема сугубо условна . Действительная форма ее элементов значительно сложнее. Однако отображение этих анатомических деталей только усложнило бы понимание принципа действия системы.

Сделаем маленькое отступление. Скорость движения дельфина в воде может достигать величины50-60 км/час , что намного превышает его мускульные энергетические возможности. Впервые на этот факт обратил внимание Джон Грэй .

Он показал, что удобообтекаемое твердое тело одинаковых с дельфином размеров и формой должно было бы затрачивать для преодоления сопротивления воды мощность, примерно в семь раз большую, чем та, которой он располагает.

Этот факт, получивший впоследствии название «парадокс Грэя» , объясняется тем, что коэффициент сопротивления при ламинарном обтекании значительно ниже, чем при турбулентном.

Объясняют парадокс Грэя особенности структуры и функционирования кожного покрова с гидрофобными и демпфирующими свойствами, а также двигательный механизм, как кожного покрова, так и всего тела дельфина.

Прежде всего, поверхность кожи совершенно гладкая и обладает гидрофоб-ным свойством (когда дельфин выныривает, на его коже нет капель воды). Гладкость же поверхности обеспечивается ее постоянным обновлением, слущиванием отмирающих частей, что защищает от биологического обрастания, столь характерного для морских плавсредств и многих обитателей морей. Это первая ступень защиты , обеспечивающая минимальный коэффициент трения.

Вторая ступень защиты обеспечивает гашение мелкомасштабных пульсаций давления водной среды предвещающих образование турбулентности.

Для этой цели эпидермис содержит два слоя: тонкий наружный и лежащий под ним ростковый или шиповидный. В ростковый слой входят шиповидные упругие сосочки дермы, которые обеспечивают надежное сцепление с амортизатором – слоем жира, пронизанным густыми сплетениями коллагеновых и эластиновых волокон.

Первая и вторая ступени – пассивные.
Под жировым слоем находится слой развитой системы подкожной мускулатуры и кровеносных сосудов. Это третья ступень защиты .

Работает третья ступень защиты следующим образом. Важнейшим условием сохранения ламинарности (безвихревого обтекания) является наличие продольного, отрицательного градиента давления, который препятствует образованию вихрей. Как только в каком либо мес-те кожи возникает тенденция к образованию положительного градиента, мускулатурный, насыщенный кровью слой тут же меняет форму поверхности тела дельфина в соответствующем месте таким образом, что ликвидирует эту тенденцию. Это уже активная мышечно-гидравлическая защита.

Информацию о поле давления выдают соответствующие рецепторы, покрывающие все тело дельфина. Одним из рецепторов осязания у животных и человека являются волосы. Дельфин, утратив волосы при своей эволюции, превратил то, что от них осталось в эти рецепторы. Поле дав-лений обтекающей воды анализируется соответствующим разделом мозга и выдает нужные команды вегетативной нервной системе, управляющей системой мускулатуры и крови.

Ту же роль в сохранении ламинарности обтекания тела дельфина играет его хвостовая часть, движения которой создают отрицательный градиент давления. Это четвертая степень защиты.

Когда дельфину нужно достичь максимально возможной скорости, например, перед высоким прыжком, он включает «форсаж», превращая кожу в дополнительный двигатель. На скоростной киносъемке хорошо видно, как по телу дельфина в направлении хвоста бежит поперечный «гофр» из выступов кожи, который является дополнительным гребным механизмом.

Таким образом, дельфин весь является двигателем высшей степени совершенства, способным двигаться с большой скоростью, находясь при этом в полностью ламинарном обтекании.

А это значит, кроме всего прочего, что у него нет и шумов обтекания, которыми так богаты технические морские средства.

А теперь, закончим сделанное отступление и вернемся к гидроакустике, зная, что дельфин движется, не создавая гидродинамических шумов.

Все тело человека покрыто густой сетью рецепторов осязания. Рецепторов прикосновения и давления (механорецепторов) в коже человека свыше 600 тысяч. Это тельца Пачини и Мейснера, а также диски Меркеля.

Механорецепторы воспринимают, в том числе вибрации и звук. Последнее не является основным их назначением – для этого существуют уши. Однако известны случаи, когда с детства глухие люди, положив ладони на стол или поставив ступни на пол, могут слушать музыку.

У дельфина механорецепторов, по-видимому, значительно больше , чем у человека. В процессе эволюции они превратились в многие тысячи гидрофонов, покрывающих все тело дельфина. В результате поверхность тела дельфина представляет собой чрезвычайно развитое многофункциональное антенное устройство, работающее в диапазоне частот от нескольких герц до 200 кГц при очень низком уровне собственных шумов и имеющее на выходе уникальное анализирующее устройство – мозг.

Иными словами все тело дельфина – это совершенный акустический глаз , который может работать как в активном, так и в пассивном режиме с круговым обзором и возможностью концентрировать максимальную разрешающую способность в нужном направлении.

Различие между оптическим глазом и акустическим заключается только в том, что в первом случае анализ информации осуществляется на основе законов геометрической оптики, а во втором – на основе законов акустической голографии.

В линзовой системе единственная информация, которую можно получить от одного рецептора, это амплитуда акустического давления. В голографической же системе построения изображения используется как амплитуда, так и фаза. Поскольку голографическая антенна несет большую информацию от каждого рецептора, то получаемые изображения обладают большей информативностью. К тому же, поскольку рецепторы покрывают все тело дельфина, т.е. антенна имеет максимальные размеры, то и разрешение ее имеет максимально достижимую величину.

На основе вышесказанного рассмотрим общую схему гидроакустической системы дельфина.

Дельфин как приемно-излучающая гидроакустическая
система.

Первая подсистема – уши (1) , дополняемые третьим приемным устройством – нижней челюстью. Она обеспечивает, в основном, прием коммуникационных сигналов, а также обеспечивает часть функций освещения подводной обстановки.

Вторая подсистема – изучающая все типы звуков в диапазоне 10 Гц – 196 кГц. Зона ее излучения (2) .

Третья подсистема – система ближней гидролокации работает в зоне (3) и использует наиболее высокочастотные сигналы.Те же гидроакустические рецепторы, что с большой плотностью распределены на лицевой стороне, с меньшей плотностью расположены по поверхности всего тела дельфина и образуют многоэлементную широкополосную гидроакустическую приемную антенну с круговой диаграммой направленности (4) .
Эта подсистема голографического приема обеспечивает освещение подводной обстановки, работая как в активном, так и в пассивном режимах, а также дополняет работу первой подсистемы.

Дельфин может воспринимать звуки такой частоты, которые сам не в состоянии воспроизвести, в отличие от наземных млекопитающих и человека, которые слышат звуки, только такой частоты, которые издают сами.

Дельфин обладает несколькими гидроакустическими информационными системами, частично перекрывающими друг друга и работающих параллельно.Разделение поступающей информации, и совместная ее обработка осуществляется с по-мощью мозга, в реальном масштабе времени.

Таким образом, обеспечивается существенное улучшение отношения сигнал/шум и соединение направленного приема, обеспечивающего высокое пространственное разрешение, с круговым обзором, который ведется как в активном, так и в пассивном режиме, что недоступно для технических средств.

Полученная информация кодируется мозгом, по-видимому, в виде четырехмерных образов (три пространственных и один частотный).
Для дельфина гидроакустический канал получения информации означает гораздо больше, чем зрение для человека. Остальные органы чувств играют вспомогательную роль.

Что видит дельфин с помощью своей гидроакустической системы? Он видит поверхность, видит дно со всеми деталями его строения, в том числе с деталями слоев подстилающих пород; видит предметы, лежащие на дне, в том числе и лежащие глубоко в иле; видит особенности каждого предмета, его размеры, форму, особенности материала, внутреннего устройства.

Он ничего не может «сказать», о каком либо конкретном предмете, если раньше его не видел. Но если рядом находятся два подобных друг другу предмета, он при некоторой тренировке, может отличить один от другого по любому параметру: по размеру, по форме, по материалу, по на-личию пустот внутри, размерам и форме этих пустот и т.д.

Он видит все плавающие вокруг него объекты (в общих чертах, так сказать «боковым зрением») и если что-то его заинтересовало, концентрирует на нем остроту своего акустического зрения. Кстати, когда дельфин плывет или хочет рассмотреть что-либо, он делает движения головой, очень похожие на движения зрачков человека в подобных ситуациях.

Несколько простейших примеров. Дельфин различает: два совершенно одинаковых по форме и размерам предмета, но сделанных, один - из стали, другой – из латуни; два одинаково обработанных сплошных стальных шара, различающихся по диаметру на 2-3%; два одинаковых герметичных толстостенных полых цилиндра, полость которых частично заполнена водой, если разность уровней воды в них со-ставляет 3-4 мм и т д.

Более сложный пример. Если в воде плывет несколько человек, среди которых один знаком дельфину, дельфин подплывет именно к нему, если знакомство имеет положительный оттенок. Если плывет одновременно, пусть на большом расстоянии, несколько хорошо знакомых людей, тренированный дельфин подплывет в случае получения команды именно к тому, на кого ему будет указано.

Как это происходит? Каждый подводный объект является трансформатором гидроакустических полей в окружающем его пространстве. На каких-то частотах преобладает отражение падающих на объект волн, на каких-то – поглощение. Происходит сдвиг фаз и меняется интерференционная структура поля, поглощенная объектом акустическая энергия переизлучается им на собственных резонансных частотах и т.д.

Каждый излученный дельфином гидроакустический локационный импульс, отражаясь от объекта, несет информацию о его положении, размерах и форме (по углу и времени прихода эхо-волн). Энергия же импульса, имеющего форму дельта-функции, возбуждает весь спектр собственных резонансных частот объекта, что создает его неповторимый акустический образ.

Основную информацию дельфину дают активные гидролокаторы: передний (высокого разрешения) и кругово й (грубого разрешения), а также пассивная слуховая стереосистема приема окружающих акустических полей.

Но возможно, определенный вклад вносит и голографическая система, работающая в пассивном режиме (без собственной подсветки), основанная на искажении объектами интерференционных полей на различных частотах, образуемых внешними источниками как когерентного, так и широкополосного фонового излучения.

Современные китообразные составляют два подотряда: усатые (Mystacoceti) и зубатые (Odontoceti) киты. Возможность использования эхолокации для обнаружения предметов в воде была показана впервые у дельфинов в 1958 г. Оценку порога сонарной системы дельфина производили в бассейне с натянутыми проволоками. Если у животных выключить зрение (на глаза надевали резиновые присоски), то они, ориентируясь только сонарной системой, в 100 % случаев избегали проволок диаметром 2,8-4 мм и в 90 % - проволок диаметром 0,5-2,8 мм и только при диаметре 0,2 мм число правильных проходов составило 46 %. Длительность импульса от 3 до 1,2 мс, частота заполнения 2 кГц, частота повторений до нескольких сот в секунду. Спектральный анализ показал, что частотный анализ излучаемых импульсов простирается до 170 кГц, но основная энергия концентрируется в диапазоне до 30 кГц. Интенсивность излучаемого сигнала сонарной системой составила по этим измерениям 70 дБ (фоновый шум в бассейне 35 дБ).

Весь диапазон звуков, излучаемых дельфинами (зубатые киты), разделяют на три категории: 1) эхолоцирующие сигналы (щелчки) - широкополосные высокочастотные импульсы, используемые для ориентации, поиска пищи и пр.; 2) коммуникационные сигналы, издаваемые дельфинами для общения между собой, в основном представлены свистами; 3) сигналы эмоционального и подражательного характера, которые через гидрофон прослушиваются как мяуканье, карканье и т.д.; биологическое значение этих звуков не исследовано. Для определения расстояния дельфины используют принцип временной задержки: измерение времени между излученным и отраженным импульсами.

Сигналы усатых китов впервые зарегистрированы в начале 1960-х годов. Это были низкочастотные сигналы, порядка 20 Гц, длительностью 1 с, которые через гидрофон прослушивались как крики и стоны. Биологическое значение этих звуков изучено недостаточно. Способ излучения акустических сигналов китообразных существенно отличается от того, как это происходит у наземных млекопитающих. У зубатых и усатых китов по-разному устроены дыхательные системы, но и у тех, и у других дыхательное отверстие открывается на темени. У зубатых китов дыхательная система полностью обособлена, тогда как у усатых китов, так же как у других млекопитающих, дыхательная система в глотке пересекается с пищеварительной системой. У зубатых китов имеется сложная система воздухоносных полостей (мешков), которые примыкают к надчерепным носовым проходам. У усатых китов подобные образования отсутствуют, но у них есть своеобразный гортанный мешок. Излучение звуков происходит по свистковому типу. Считают, что локационные сигналы генерируются при прохождении звуков между стенками наружного носового прохода и внутренними носовыми пробками. Кости черепа, вероятно, отражают звук вперед, а жировая подушка, столь характерная для рострума дельфинов, играет роль линзы, которая сужает или расширяет звуковой пучок путем изменения формы лобного выступа (рис. 14.46). Таким образом, предполагают, что дельфин способен фокусировать звуковой пучок. Например, при нахождении рыбы ниже челюстей дельфина, он ее не обнаруживает, но как только рыба перемещается выше челюстей, она сразу обнаруживается.

Строение органов слуха китообразных. Наружное ухо у китообразных редуцировано до узкого прохода (1,5-2 мм), который открывается наружу сзади глаз. Ушные раковины отсутствуют. Почти сразу за наружным слуховым отверстием слуховой проход резко сужается, а в жировом слое полностью зарастает. Пройдя жировой слой, слуховой проход делает S-образный изгиб, и в нем снова появляется просвет, который заканчивается у видоизмененной барабанной перепонки (она имеет форму сложенного зонтика).

Среднее ухо у китообразных массивное по сравнению со средним ухом наземных млекопитающих. Вершина барабанной перепонки соединена под углом с укороченной рукояткой молоточка, который, в свою очередь, связан тонким отростком с барабанной костью. Все три слуховые косточки (молоточек, наковальня, стремечко) плотные, небольшой величины, жестко соединены между собой. Система среднего уха специализирована для передачи звуков широкого частотного диапазона, включая ультразвуки.

Внутреннее ухо имеет черты приспособления к восприятию высокочастотных звуков. У китообразных, особенно у зубатых китов, улитка сильно увеличена по сравнению с вестибулярным аппаратом, особенно сильно развит базальный виток. Базилярная мембрана у основания узкая (ширина около 25 мкм), к вершине расширяется до 350 мкм (примерно в 14 раз). Количество волосковых клеток примерно такое же, как у человека. Строение кортиева органа такое же, как у наземных млекопитающих.

Методом регистрации микрофонного потенциала показано, что наружный слуховой проход не участвует в проведении звука. Предполагают, что волноводом служит нижняя челюсть и через нее звуковая волна достигает структур среднего уха. При плавании дельфины совершают маятниковые движения рострумом; считают, что таким образом дельфин как бы сканирует окружающее пространство.

Китообразные ведут водный образ жизни, поэтому их череп не может выполнять роль изолятора между двумя ушами. В связи с этим у китообразных структуры уха не срастаются с черепом, а подвешены на короткой сухожильной связке. Среднее ухо и внутреннее ухо располагаются в одном костном образовании (os petrotympanicum). В результате этого орган слуха механически достаточно надежно изолирован от костей черепа. Другая особенность заключается в том, что среднее ухо и внутреннее ухо окружены специальным синусом, заполненным воздухом и пеной из белковой эмульсии, что также способствует изоляции структур уха от черепа.

Строение и физиология слуховых центров изучены недостаточно, но необходимо отметить очень сильное развитие подкорковых слуховых центров.


ЗНАЧЕНИЕ ЭХОЛОКАЦИИ В ЖИЗНИ ДЕЛЬФИНА

Некоторые животные (китообразные и большинство летучих мышей) обладают удивительной для человека способностью – “видеть” в полной темноте объекты, направляя на них высокочастотные звуковые волны и “слушая” эхо. Эта способность называется эхолокацией. Для них эхолокация – важнейший способ ориентации в пространстве и главный путь получения информации об окружающем мире. В природе дельфины очень часто используют свой эхолокационный аппарат. Эхо дает им точные сведения не только о положении предметов, но и об их величине, форме, материале. В режиме эхолокации дельфины используют короткие широкополосные импульсы, намного отличающиеся по длительности от сигналов наземных лоцирующих животных. В качестве локационных щелчков дельфин использует импульсы длительностью 7-100 мкс. Эти импульсы проходят через лобный выступ головы дельфина – так называемый “мелон”. Он состоит из соединительной ткани и жира. Мелон работает как акустическая линза для фокусировки звука, такое значение эхолокации в жизни дельфина. Звуковые волны распространяются в воде со скоростью около 1,5 км/с (в 4,5 раза быстрее, чем в воздухе). Они отражаются от объекта и возвращаются в форме эха к животному.

ЗНАЧЕНИЕ ЭХОЛОКАЦИИ В ЖИЗНИ ДЕЛЬФИНА:

Время между произведенным щелчком-сигналом и возвратом его эха указывает животным расстояние до любого объекта на их пути. Эхолокация наиболее эффективна в диапазоне от 5 до 200 м для объектов размером от 5 до 15 см в диаметре. Животное может определить размер и форму объекта. Это помогает дельфинам распознать предпочитаемые ими виды добычи. Однако исследования показали, что лишенный зрения дельфин тратит больше времени на эхолокацию.
Для переработки поступаюших эхосигналов требуется высокоразвитый мозг. Не случайно отделы мозга дельфина, заведующие слуховыми функциями, в десятки раз больше, чем у человека. Очень многие детали остаются неизвестными, исследования продолжаются.

Можно сказать, что дельфины видят окружающий мир преимущественно одним глазом. Только в узком секторе поля зрения, примерно 12°, вперед и книзу от головы афалина может видеть двумя глазами, бинокулярно.
Дельфины хорошо видят и под водой, и на воздухе. Сетчатка китообразных имеет две области наилучшего видения (человеческий глаз имеет только одну). На одной из них оптика глаза обеспечивает хорошее изображение в воде, на другой – преимущественно в воздухе.
Необычно устроен и зрачок у дельфина: сужаясь, он образует дугообразную щель, которая при дальнейшем сужении смыкается посередине, оставляя два небольших отверстия на концах. Эти два узких отверстия работают как диафрагмы фотообъектива, увеличивая глубину резкости и, тем самым, подправляя недостатки преломляющей системы глаза.
Сетчатка дельфина содержит два вида клеток, воспринимающих свет: палочки и колбочки. Это говорит о том, что дельфины могут видеть и в темноте, и при ярком свете (палочковидные клетки отвечают за меньший уровень освещенности, чем колбочки). Глаза у дельфинов имеют хорошо выраженный слой клеток, который отражает свет через сетчатку второй раз. Это улучшает зрение при слабом освещении.

ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ

Анатомические исследования и поведенческие наблюдения показывают, что бутылконосые дельфины имеют хорошо выраженную тактильную чувствительность. Кожа дельфина чувствительна в широком диапазоне. Иннервация кожи афалины значительно богаче по сравнению с кожей человека.

О чувстве вкуса у дельфинов известно мало. Особенности мозга и черепных нервов у дельфинов позволяют предполагать, что они могут иметь некоторый вид вкусовых ощущений. Однако у дельфинов сильно выражено предпочтение определенных видов рыбы. Это позволяет не сомневаться в существовании у них вкусовых ощущений.
Было доказано наличие у дельфинов вкусовых луковиц на языке. Наши ученые экспериментально подтвердили возможность восприятия малых концентраций некоторых веществ в воде, тем самым доказав существование у зубатых китов хеморецепции.

ОБОНЯНИЕ

Обонятельные доли мозга и обонятельные нервы отсутствуют у всех зубатых китов, что заставляет предполагать отсутствие у них обоняния.

Адаптация к водной среде

Для жизни в воде и дыхания воздухом предку современного дельфина пришлось изменить всю дыхательную систему. Дыхательная система зубатых китов полностью изолирована от пищеварительной системы.
Наружное дыхательное отверстие – непарная ноздря (дыхало) – находится на самой высокой точке головы. Дыхало закрывается кожно-мышечной складкой.
В отличие от наземных млекопитающих дельфины начинают дыхательный цикл с выдоха. Они открывают дыхало и начинают выдыхать, когда голова показывается над поверхностью воды. Сигналом служит смена среды вода – воздух (рефлекторная регуляция дыхания). Затем животные быстро вдыхают и расслабляют мышцы дыхала, для того чтобы снова закрыть его. Мышцы дыхала расслаблены в закрытом положении. Выдох и вдох вместе длятся менее 1 с. Возможность быстрой смены воздуха в легких – это тоже адаптация дельфинов к жизни в водной среде. Средняя частота дыхания составляет 2-3 дыхательных акта (выдох-вдох) в минуту. Когда дельфин выдыхает, морская вода вокруг дыхала удаляется потоком воздуха. Но даже если вода и попадет в дыхательные пути, она неизбежно выбрасывается наружу в виде фонтанчиков, состоящих из брызг воды и конденсированного пара.
Верхние дыхательные пути у зубатых китов имеют два барьера, изолирующих воздухоносные пути от внешней среды. Первый – клапан в виде кожно-мышечных склaдoк – располагается в области надчерепного дыхательного хода, в который открывается дыхало. Выступы одной складки клапана заходят во впадины другой. Второй барьер – носоглоточный сфинктер – расположен в области входа в гортань.
Трахеи и бронхи короткие. Это ускоряет акт дыхания. Число альвеол относительно больше, а размеры их намного крупнее, чем у наземных млекопитающих.
Во время дыхательного акта дельфин обменивает около 80 % воздуха в легких. Это значительно более эффективно по сравнению с людьми, которые обменивают только 17 % воздуха в легких во время каждого вдоха.

Дельфины охотятся и в толще воды, и в придонной области. В зависимости от мест обитания дельфины регулярно ныряют на глубину от 3 до 45 м. Но они в состоянии нырнуть и на гораздо большую глубину. В экспериментальных условиях дельфин достигал 547-метровой глубины. Согласно наблюдениям, афалины могут оставаться под водой 6-7 мин. Многовековой эволюцией физиология дельфина приспособлена к нырянию. На глубине животные не могут пополнить запас кислорода. Для создания этого запаса у дельфинов есть целый ряд приспособлений:
Значительный объем легких. Масса легких у афалин по отношению к массе тела составляет 2,2-2,9 % (у человека – 0,7 %). Коэффициент использования кислорода в легких в 2,5 раза выше, чем у человека.
Большой объем крови. Высокая концентрация гемоглобина* в крови (по данным S.Ridgway, кислородная емкость крови на 1/4 – 1/3 выше, чем у человека). Концентрация миоглобина** в тканях в 4-9 раз выше, чем у наземных животных. При дыхании гемоглобин в крови и миоглобин в тканях насыщаются кислородом. Во время ныряния дельфинов запасенный ими кислород расходуется очень экономно. У животного, находящегося под водой, замедляется сердечный ритм, уменьшается приток крови к тканям, устойчивым к низкому содержанию кислорода, и увеличивается кровоснабжение сердца, легких и головного мозга, где кислород жизненно необходим. Снижается интенсивность метаболизма.
Большой объем жировой ткани, которая имеет свойство растворять больше кислорода, чем тканевые жидкости.
Природой также предусмотрены приспособления для защиты от баротравм. У дельфинов подвижная грудная клетка, способная сжиматься под давлением воды, очень упругие легкие, ткань легких приспособлена к быстрому сжатию и расширению.

* гемоглобин – белок крови, присоединяющий и транспортирующий кислород и углекислый газ.
**миоглобин – кислородсвязывающий белок тканей, запасающий кислород и помогающий предотвратить дефицит кислорода в мышцах.

ПЛАВАНИЕ

Дельфины – одни из самых быстрых обитателей океана. И это понятно – они должны превосходить в скорости рыб, которыми питаются. Обычная скорость плавания дельфина – около 5-11 км/ч. Однако в погоне за добычей они развивают намного большую скорость. Эргометрические исследования показали, что максимальная (бросковая) скорость у афалин – от 29 до 35 км/ч. Но скоростное плавание длится считанные секунды.

ТЕРМОРЕГУЛЯЦИЯ

Вода обладает почти в 25 раз большей теплопроводностью, чем воздух. Высокая теплопроводность воды способствовала формированию в ходе эволюции многих признаков, обеспечивающих эффективную регуляцию тепла. Под кожей у дельфинов находится толстый слой жира. Этот слой служит изолятором и энергетическим резервом. Жир составляет обычно 18-20 % массы тела. Определенное значение в консервации внутреннего тепла имеют особенности дыхания китообразных. Редкое дыхание на поверхности, задержка дыхания при нырянии снижают отдачу тепла с выдыхаемым воздухом.
Веретенообразная форма тела и небольшой размер конечностей уменьшают площадь поверхности, контактирующей с внешней средой. У животных, живущих в глубоких, холодных водах, обычно крупнее тела и меньше конечности, чем у дельфинов, живущих в прибрежных, теплых водах.
Внутренняя температура тела дельфина – около 36-37 С. Кровеносная система дельфина приспособлена для того, чтобы сохранять или рассеивать тепло тела, регулируя его температуру.
У афалины основными органами терморегуляции служат спинной, грудные и хвостовые плавники. Они обильно снабжены кровеносными сосудами. Артерии в ластах, хвосте и спинном плавнике окружены венами, образуя комплексные сосуды. Комплексный сосуд состоит из толстостенной мышечной артерии и венозной оплетки – тонкостенных вен, которые окружают артерию. Эту сосудистую сеть называют противоточной системой теплообмена. Благодаря ей большая часть тепла, приносимая к плавникам артериями, отдается не в окружающую среду, а в венозную кровь, с которой оно уносится, к внутренним органам. Такая система обеспечивает минимальную теплоизлучающую поверхность и способствует консервации тепла. В тех случаях, когда животное перегревается, охлаждение достигается усилением кровотока через поверхностно расположенные вены. Когда необходимо сохранить тепло, артериальный поток крови в плавники сокращается.
У афалин скорость метаболизма выше, чем у наземных млекопитающих такого же размера. Это ведет к генерации большего количества тепла.

При изучении сна у афалин исследователи обнаружили, что эти дельфины проводят во сне приблизительно ЗЗ % времени суток. В отличие от наземных млекопитающих, сон афалин и других дельфинов не сопровождается полной неподвижностью, дельфины могут спать во время спокойного плавания. Отечественные исследования показали, что глубокий медленноволновой сон может наблюдаться в данный момент времени только в одном из полушарий головного мозга, поочередно то в правом, то в левом. Подобного, однополушарного сна нет ни у одного наземного млекопитающего.



И дельфины испускают ультразвук. Зачем это нужно и как оно работает? Давайте разберемся, что такое эхолокация и как она помогает животным и даже людям.

Что такое эхолокация

Эхолокация, также называемая биосонаром, представляет собой биологический гидролокатор, используемый несколькими видами животных. Эхолоцирующие животные излучают сигналы в окружающую среду и слушают отголоски тех вызовов, которые возвращаются из разных объектов рядом с ними. Они используют эти эхо-сигналы для поиска и идентификации объектов. Эхолокация применяется для навигации и для фуража (или охоты) в различных условиях.

Принцип работы

Эхолокация - это то же самое, что и активный сонар, который использует звуки, воспроизводимые самим животным. Ранжирование осуществляется путем измерения временной задержки между собственным звуковым излучением животного и любыми эхо-сигналами, возвращающимися из окружающей среды.

В отличие от некоторых гидролокаторов, созданных человеком, которые полагаются на чрезвычайно узкие лучи и множество приемников для локализации мишени, метод эхолокации животных основан на одном передатчике и двух приемниках (уши). Эхо-сигналы, возвращающиеся к двум ушам, поступают в разное время и на разных уровнях громкости, в зависимости от положения объекта, генерирующего их. Различия во времени и громкости используются животными для восприятия расстояния и направления. С эхолокацией летучая мышь или другое животное может видеть не только расстояние до предмета, но и его размер, то, какое это животное, и другие особенности.

Летучие мыши

Летучие мыши используют эхолокацию для навигации и фуража, часто в полной темноте. Они обычно выходят из своих ночлегов в пещерах, чердаках или деревьях в сумерках и охотятся за насекомыми. Благодаря эхолокации летучие мыши заняли очень выгодную позицию: они охотятся ночью, когда много насекомых, меньше конкуренции за еду и меньше видов, которые могут охотиться на самих летучих мышей.

Летучие мыши генерируют ультразвук через гортань и излучают звук через открытый рот или, что гораздо реже, нос. Они испускают звук в диапазоне от 14 000 до более 100 000 Гц, в основном за пределами человеческого уха (типичный диапазон слуха человека - от 20 Гц до 20 000 Гц). Летучие мыши могут оценить перемещение целей путем интерпретации картин, вызванных отражением эхо-сигналов от специального лоскута кожи во внешнем ухе.

Отдельные виды летучих мышей используют эхолокацию в определенных диапазонах частот, которые соответствуют их условиям жизни и типам добычи. Это иногда использовалось исследователями для определения вида летучих мышей, населяющих этот район. Они просто записывали их сигналы с помощью ультразвуковых регистраторов, известных как детекторы летучих мышей. В последние годы исследователи из нескольких стран разработали библиотеки сигналов летучих мышей, которые содержат записи местных видов.

Морские животные

Биосонар ценен для подотряда зубатых китов, который включает в себя дельфинов, касаток и кашалотов. Они живут в подводной среде обитания, которая обладает благоприятными акустическими характеристиками, и где видение чрезвычайно ограничено из-за мутности воды.

Наиболее значимых первых результатов в описании эхолокации дельфинов добились Уильям Шевилл и его жена Барбара Лоренс-Шевилл. Они занимались кормлением дельфинов и однажды заметили, что те безошибочно находят кусочки рыбы, которые бесшумно опускались в воду. За этим открытием последовал ряд других экспериментов. На данный момент установлено, что дельфины используют частоты в диапазоне от 150 до 150 000 Гц.

Эхолокация синих китов изучена намного меньше. Пока что только строятся предположения, что «песни» китов - это способ навигации и связи с сородичами. Эти знания используются для подсчета популяции и для слежения за миграциями этих морских животных.

Грызуны

Понятно, что такое эхолокация у морских животных и летучих мышей, и для чего она им нужна. Но зачем это грызунам? Единственными наземными млекопитающими, способными к эхолокации, являются два рода землероек, тейреки с Мадагаскара, крысы и щелезубы. Они испускают серию ультразвуковых скрипов. Они не содержат эхолокационных откликов с реверберациями и, по-видимому, используются для простой пространственной ориентации на близком расстоянии. В отличие от летучих мышей, землеройки используют эхолокацию только для изучения мест обитания добычи, а не для охоты. За исключением больших и, таким образом, сильно отражающих объектов (к примеру, большой камень или ствол дерева), они, вероятно, не способны распутывать эхо-сцены.

Самые талантливые эхолокаторы

Кроме перечисленных животных, есть и другие, способные заниматься эхолокацией. Это некоторые виды птиц и тюленей, но самые изощренные эхолокаторы - это рыбы и миноги. Раньше учёные считали летучих мышей самыми способными, но в последние десятилетия выяснилось, что это не так. Воздушная среда не располагает к эхолокации - в отличие от водной, в которой звук расходится в пять раз быстрее. Эхолокатором рыб является орган боковой линии, который воспринимает вибрации окружающей среды. Используется как для навигации, так и для охоты. У некоторых видов есть ещё и электрорецепторы, которые улавливают электрические колебания. Что такое эхолокация для рыб? Часто это синоним выживания. Она объясняет, как ослепшие рыбы могли доживать до почтенного возраста - им и не нужно было зрение.

Эхолокация у животных помогла объяснить схожие способности у слабовидящих и незрячих людей. Они ориентируются в пространстве с помощью издаваемых ними щелкающих звуков. Ученые говорят, что такие короткие звуки издают волны, которые можно сравнить со светом карманного фонарика. На данный момент слишком мало данных для разработки этого направления, поскольку способные эхолокаторы среди людей - большая редкость.